Presented by:
Steven Kao
Michelle Maestas

Calculus 3 Prep
(Calc 2 Review)

These interactive workshops will review all foundational material leading up to the specified course so you are better equipped to hit the ground running.

Synchronous in-person in the ESS suite & virtual via Zoom

<table>
<thead>
<tr>
<th>Workshop</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 1 Prep</td>
<td>Monday, January 10, 2022</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Pre-Calc/Trip Prep (College Algebra Review)</td>
<td>Tuesday, January 11, 2022</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Calc 1 Prep (Pre-Calc/Trip Review) - PM offering</td>
<td>Tuesday, January 11, 2022</td>
<td>1 - 3 PM</td>
</tr>
<tr>
<td>Chem 1 Prep</td>
<td>Wednesday, January 12, 2022</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Calc 1 Prep (Pre-Calc/Trip Review) - AM offering</td>
<td>Thursday, January 13, 2022</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Calc 2 Prep (Calc 1 Review)</td>
<td>Thursday, January 13, 2022</td>
<td>1 - 3 PM</td>
</tr>
<tr>
<td>Calc 3 Prep (Calc 2 Review)</td>
<td>Friday, January 14, 2022</td>
<td>10 AM - 12 PM</td>
</tr>
</tbody>
</table>

RSVP is preferred but not required
ess.unm.edu/events > January

or through our app - succESS
WE ARE
STUDENT SUCCESS!

WE OFFER:
Tutoring
Scholarships and fellowships
Engineering tours
Jobs and internships
Networking events
Mentoring and undergraduate research
Academic success workshops
K-12 opportunities
...and more!!

CONTACT US TODAY!
ess@unm.edu
(505) 277-4354
Centennial Engineering Center, Suite 2080
ess.unm.edu

ENGLISH STUDENT SUCCESS CENTER

5 Reasons to Engage with
Access to Scholarships & Financial Aid

Build Your Network
Achieve Academic Success

Enhance Your Resume
Connect to Research & Internship Opportunities
Join our events for **YOUR CHANCE** to win!

Each semester we award **Gift Cards** to the UNM Bookstore based on most attended (with bonus points for providing feedback).

WIN a gift card.
GAIN experience.
BUILD your skillset.
ENHANCE your resume.
Drop-In Tutoring for Engineering & Computing

Get help in your core STEM courses, engineering & computing specific classes, software, and coding languages.

ESS suite (CEC 2080) & online via the Penji App (with Zoom)

Tutoring schedule & more info at ess.unm.edu/services/tutoring/

or through our app - succESS
CENTER FOR ACADEMIC PROGRAM SUPPORT

caps.unm.edu

WRITING
SCIENCE
MATH
LANGUAGES

Online Drop-in Support
Individual Appointments
Supplemental Instruction
Learning Strategies

facebook
/capsunm

youtube
/unmcaps
Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

MENTORING

• BE a mentor
 ...to our incoming students in their transition into the University of New Mexico, the university setting, and Albuquerque.

• HAVE a mentor*
 ...who is a STEM Professional working in the field to build your network and receive guidance and support.

 *This program is open to UNM STEM Majors. Priority is given to Freshmen and Sophomores, but all levels are encouraged to apply.

INTERNSHIPS

Getting real-world experiences leads to your satisfaction with your undergraduate journey. Gain valuable hands-on experience while making professional connections.

These programs are only open to School of Engineering Students.

RESEARCH

• EPICS @UNM
 ...to give back to the community, earn credit, and gain research experience all at the same time!

• Student Research Experience Program
 ...to get hands-on research experience to understand how your courses fit in to real-world applications.

These programs are only open to School of Engineering Students.

For more information, or to apply, visit:
https://ess.unm.edu/programs/current-students
Spring 2022 Events

We are Student Success

Put your learning into your own hands.

This APP allows you to

Engineer your own
Introducing a tool for

And more! For more details, visit our app - success

Lab Safety Rules

And more! For more details, visit our app - success

Career and Professional Development Events

With help from...

Building a Resume & Cover Letters
Technical Writing
Interviewing Strategies
Internships and Career Fairs

Spatial Visualization Series

Improving STEM
Undergraduate Research Opportunities Conference (UROC)
Email/Networking Etiquette
Effective Communication Skills

First & Second Year Student Events

Peer Instruction
Designing Effective Presentations
Doing EE Research

Getting Started

Career Events

Math 1 Seminar: Step Series
Physical Chemistry 1: Physical Chemistry II
Research Proposal Writing

You are welcome to all events
Calc II Review

Important Concepts:
- Inverse function theorem and its applications
- Integration techniques: integration by parts, trig reduction, trig substitution, partial fraction decomposition
- Improper integrals
- Convergence tests for sequences and series
Inverse Functions

Let \(f(x) \) be a 1-to-1 function having domain \(A \) and range \(B \).

The inverse function \(f^{-1}(x) \) satisfies the following “cancellation” properties:

1. \(f^{-1}(f(x)) = x \) for every \(x \in A \).
2. \(f(f^{-1}(y)) = y \) for every \(y \in B \).

Conversely, any function \(f^{-1}(x) \) satisfying the above properties is the inverse of \(f(x) \).

Key Points:

• A function MUST be 1-to-1 in order to have an inverse.
• The inverse function “undoes” the original function.
• This means the domain of the inverse function \(f^{-1}(x) \) is the range \(B \) of the original function \(f(x) \), and the range of \(f^{-1}(x) \) is the domain \(A \) of \(f(x) \).
Inverse function theorem

Let f be a differentiable function having an inverse on the interval I. If x_0 is a point of I such that $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}, \quad \text{where} \quad y_0 = f(x_0)$$
Find the derivative of $f^{-1}(y_0)$ given the function f and the point y_0:

1. $f(x) = \sqrt{x} + x^2 + 2$, $y_0 = 4$
2. $f(x) = \tan(\pi x)$, $y_0 = 1$
3. $f(x) = \frac{x}{x-6}$, $y_0 = 4$
Integration Techniques
Integration by Parts

Given two differentiable functions u and v, the Product Rule states that

$$\frac{d}{dx} (u(x)v(x)) = u'(x)v(x) + u(x)v'(x).$$

By integrating both sides, we can write this rule in terms of an indefinite integral:

$$u(x)v(x) = \int (u'(x)v(x) + u(x)v'(x)) \, dx.$$

Rearranging this expression in the form

$$\int u(x)v'(x) \, dx = u(x)v(x) - \int v(x)u'(x) \, dx$$

Integration by Parts

Suppose u and v are differentiable functions. Then

$$\int u \, dv = uv - \int v \, du.$$
Example

Evaluate the integral.

\[\int x^2 2^x \, dx \]
Practice

1) $\int \frac{\ln x}{x^{10}} \, dx$

2) $\int x^2 (\ln x)^2 \, dx$

3) $\int \sin^{-1} x \, dx$

4) $\int e^{\sqrt{x}} \, dx$

5) $\int (\sec x)^3 \, dx$
Trig Integrals

<table>
<thead>
<tr>
<th>Integral</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int \sin^m x \cos^n x , dx$</td>
<td>Split off $\sin x$, rewrite the resulting even power of $\sin x$ in terms of $\cos x$, and then use $u = \cos x$.</td>
</tr>
<tr>
<td>m odd and positive, n real</td>
<td></td>
</tr>
<tr>
<td>n odd and positive, m real</td>
<td>Split off $\cos x$, rewrite the resulting even power of $\cos x$ in terms of $\sin x$, and then use $u = \sin x$.</td>
</tr>
<tr>
<td>m and n both even, nonnegative integers</td>
<td>Use half-angle formulas to transform the integrand into a polynomial in $\cos 2x$, and apply the preceding strategies once again to powers of $\cos 2x$ greater than 1.</td>
</tr>
<tr>
<td>$\int \tan^m x \sec^n x , dx$</td>
<td>Split off $\sec^2 x$, rewrite the remaining even power of $\sec x$ in terms of $\tan x$, and use $u = \tan x$.</td>
</tr>
<tr>
<td>n even and positive, m real</td>
<td></td>
</tr>
<tr>
<td>m odd and positive, n real</td>
<td>Split off $\sec x \tan x$, rewrite the remaining even power of $\tan x$ in terms of $\sec x$, and use $u = \sec x$.</td>
</tr>
</tbody>
</table>
Example

Evaluate the integral.

\[\int (\sin x)^2 (\cos x)^2 \, dx \]
Practice

25. \[\int \sin^2 x \cos^4 x \, dx \]
26. \[\int \sin^3 x \cos^{3/2} x \, dx \]
27. \[\int \tan^2 x \, dx \]
28. \[\int 6 \sec^4 x \, dx \]
35. \[\int \tan x \sec^3 x \, dx \]
36. \[\int \tan 4x \sec^{3/2} 4x \, dx \]
Trig Substitution

The Integral Contains . . .

\[a^2 - x^2 \quad x = a \sin \theta, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \text{ for } |x| \leq a \]

\[a^2 + x^2 \quad x = a \tan \theta, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2} \]

\[x^2 - a^2 \quad x = a \sec \theta, \quad \begin{cases}
0 \leq \theta < \frac{\pi}{2}, \text{ for } x \geq a \\
\frac{\pi}{2} < \theta \leq \pi, \text{ for } x \leq -a
\end{cases} \]

Useful Identity

\[a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta \]

\[a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta \]

\[a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta \]
Example

Evaluate the integral.

\[\int \frac{\sqrt{x^2+4x-5}}{x+2} \, dx \]
Practice

18. \[\int \frac{dx}{(1 + x^2)^{3/2}} \]

19. \[\int \frac{dx}{\sqrt{x^2 - 81}}, x > 9 \]

20. \[\int \frac{dx}{\sqrt{x^2 - 49}}, x > 7 \]

21. \[\int \sqrt{64 - x^2} \, dx \]

22. \[\int \frac{dt}{t^2 \sqrt{9 - t^2}} \]

23. \[\int \frac{dx}{(25 - x^2)^{3/2}} \]
Partial Fractions

SUMMARY Partial Fraction Decompositions

Let \(f(x) = \frac{p(x)}{q(x)} \) be a proper rational function in reduced form. Assume the denominator \(q \) has been factored completely over the real numbers and \(m \) is a positive integer.

1. **Simple linear factor** A factor \(x - r \) in the denominator requires the partial fraction \(\frac{A}{x - r} \).

2. **Repeated linear factor** A factor \((x - r)^m\) with \(m > 1 \) in the denominator requires the partial fractions
 \[
 \frac{A_1}{(x - r)} + \frac{A_2}{(x - r)^2} + \frac{A_3}{(x - r)^3} + \cdots + \frac{A_m}{(x - r)^m}.
 \]

3. **Simple irreducible quadratic factor** An irreducible factor \(ax^2 + bx + c \) in the denominator requires the partial fraction
 \[
 \frac{Ax + B}{ax^2 + bx + c}.
 \]

4. **Repeated irreducible quadratic factor** (See Exercises 61–64.) An irreducible factor \((ax^2 + bx + c)^m\) with \(m > 1 \) in the denominator requires the partial fractions
 \[
 \frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}.
 \]
Example

Evaluate the integral.

\[\int \frac{10}{(x-2)^2(x^2+2x+2)} \, dx \]
Practice

45. \[\int \frac{x - 5}{x^2(x + 1)} \, dx \]

46. \[\int \frac{x^2}{(x - 2)^3} \, dx \]

47. \[\int \frac{x^3 - 10x^2 + 27x}{x^2 - 10x + 25} \, dx \]

48. \[\int \frac{x^3 + 2}{x^3 - 2x^2 + x} \, dx \]

49. \[\int \frac{x^2 - 4}{x^3 - 2x^2 + x} \, dx \]

50. \[\int \frac{8(x^2 + 4)}{x(x^2 + 8)} \, dx \]
Improper Integrals, Part I

DEFINITION Improper Integrals over Infinite Intervals

1. If \(f \) is continuous on \([a, \infty)\), then
 \[
 \int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx.
 \]

2. If \(f \) is continuous on \((\infty, b]\), then
 \[
 \int_{-\infty}^b f(x) \, dx = \lim_{a \to -\infty} \int_a^b f(x) \, dx.
 \]

3. If \(f \) is continuous on \((\infty, \infty)\), then
 \[
 \int_{-\infty}^{\infty} f(x) \, dx = \lim_{a \to -\infty} \int_a^c f(x) \, dx + \lim_{b \to \infty} \int_c^b f(x) \, dx,
 \]
 where \(c \) is any real number. It can be shown that the choice of \(c \) does not affect the value or convergence of the original integral.

 If the limits in cases 1–3 exist, then the improper integrals **converge**; otherwise, they **diverge**.
Improper Integrals, Part II

DEFINITION Improper Integrals with an Unbounded Integrand

1. Suppose \(f \) is continuous on \((a, b] \) with
\[
\lim_{x \to b^-} f(x) = \pm \infty.
\]
Then
\[
\int_a^b f(x) \, dx = \lim_{c \to b^-} \int_c^b f(x) \, dx.
\]

2. Suppose \(f \) is continuous on \([a, b) \) with
\[
\lim_{x \to a^+} f(x) = \pm \infty.
\]
Then
\[
\int_a^b f(x) \, dx = \lim_{c \to a^+} \int_a^c f(x) \, dx.
\]

3. Suppose \(f \) is continuous on \([a, b) \) except at the interior point \(c \) where \(f \) is unbounded. Then
\[
\int_a^b f(x) \, dx = \lim_{c \to c^-} \int_a^c f(x) \, dx + \lim_{d \to c^+} \int_c^d f(x) \, dx.
\]
If the limits in cases 1–3 exist, then the improper integrals converge; otherwise, they diverge.
Example

Evaluate the integral.

\[\int_{0}^{3} \frac{1}{x-1} \, dx \]
Practice

35. \(\int_{-\infty}^{0} \frac{dx}{\sqrt[3]{2 - x}} \)

37. \(\int_{0}^{8} \frac{dx}{\sqrt[3]{x}} \)

39. \(\int_{0}^{\pi/2} \tan \theta \, d\theta \)

36. \(\int_{e^2}^{\infty} \frac{dx}{x \ln^p x}, p > 1 \)

38. \(\int_{1}^{2} \frac{dx}{\sqrt{x - 1}} \)

40. \(\int_{-3}^{1} \frac{dx}{(2x + 6)^{2/3}} \)
Sequences and Series
Sequences

DEFINITION Limit of a Sequence

If the terms of a sequence \(\{a_n\} \) approach a unique number \(L \) as \(n \) increases—that is, if \(a_n \) can be made arbitrarily close to \(L \) by taking \(n \) sufficiently large—then we say \(\lim_{n \to \infty} a_n = L \) exists, and the sequence **converges** to \(L \). If the terms of the sequence do not approach a single number as \(n \) increases, the sequence has no limit, and the sequence **diverges**.
Properties of Sequences

Theorem 10.2 Limit Laws for Sequences
Assume the sequences \(\{a_n\} \) and \(\{b_n\} \) have limits A and B, respectively. Then

1. \(\lim_{n \to \infty} (a_n \pm b_n) = A \pm B \)

2. \(\lim_{n \to \infty} c a_n = cA \), where \(c \) is a real number

3. \(\lim_{n \to \infty} a_n b_n = AB \)

4. \(\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B} \), provided \(B \neq 0 \).

Theorem 10.4 Squeeze Theorem for Sequences
Let \(\{a_n\} \), \(\{b_n\} \), and \(\{c_n\} \) be sequences with \(a_n \leq b_n \leq c_n \) for all integers \(n \) greater than some index \(N \). If \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \), then \(\lim_{n \to \infty} b_n = L \) (Figure 10.19).

Theorem 10.5 Bounded Monotonic Sequence
A bounded monotonic sequence converges.
Examples

a. \[\left\{ \frac{(-1)^n}{n^2 + 1} \right\}_{n=1}^{\infty} \]

b. \[\{ \cos n\pi \}_{n=1}^{\infty} \]

c. \[\{ a_n \}_{n=1}^{\infty}, \text{ where } a_{n+1} = 2a_n, a_1 = 1 \]
Infinite Series

DEFINITION Infinite Series
Given a sequence \(\{a_1, a_2, a_3, \ldots \} \), the sum of its terms
\[
a_1 + a_2 + a_3 + \cdots = \sum_{k=1}^{\infty} a_k
\]
is called an infinite series. The sequence of partial sums \(\{S_n\} \) associated with this series has the terms
\[
\begin{align*}
S_1 &= a_1 \\
S_2 &= a_1 + a_2 \\
S_3 &= a_1 + a_2 + a_3 \\
\vdots \\
S_n &= a_1 + a_2 + a_3 + \cdots + a_n = \sum_{k=1}^{n} a_k, \quad \text{for } n = 1, 2, 3, \ldots
\end{align*}
\]

If the sequence of partial sums \(\{S_n\} \) has a limit \(L \), the infinite series converges to that limit, and we write
\[
\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n = L.
\]
If the sequence of partial sums diverges, the infinite series also diverges.
THEOREM 10.8 Properties of Convergent Series

1. Suppose \(\sum a_k \) converges to \(A \) and \(c \) is a real number. The series \(\sum ca_k \) converges, and \(\sum ca_k = c\sum a_k = cA \).

2. Suppose \(\sum a_k \) diverges. Then \(\sum ca_k \) also diverges, for any real number \(c \neq 0 \).

3. Suppose \(\sum a_k \) converges to \(A \) and \(\sum b_k \) converges to \(B \). The series \(\sum (a_k \pm b_k) \) converges, and \(\sum (a_k \pm b_k) = \sum a_k \pm \sum b_k = A \pm B \).

4. Suppose \(\sum a_k \) diverges and \(\sum b_k \) converges. Then \(\sum (a_k \pm b_k) \) diverges.

5. If \(M \) is a positive integer, then \(\sum_{k=1}^\infty a_k \) and \(\sum_{k=M}^\infty a_k \) either both converge or both diverge. In general, whether a series converges does not depend on a finite number of terms added to or removed from the series. However, the value of a convergent series does change if nonzero terms are added or removed.
THEOREM 10.7 Geometric Series

Let $a \neq 0$ and r be real numbers. If $|r| < 1$, then

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1 - r}.$$

If $|r| \geq 1$, then the series diverges.

- Diverges $r \leq -1$
- Converges $-1 < r < 1$
- Diverges $r \geq 1$
Telescoping Series

\[
\sum_{k=1}^{\infty} \left(\frac{\cos \frac{1}{k}}{k} - \frac{\cos \frac{1}{k+1}}{k+1} \right)
\]

\[
S_n = \sum_{k=1}^{n} \left(\frac{\cos \frac{1}{k}}{k} - \frac{\cos \frac{1}{k+1}}{k+1} \right)
\]

\[
= \left(\frac{\cos 1}{1} - \frac{\cos \frac{1}{2}}{2} \right) + \left(\frac{\cos \frac{1}{2}}{2} - \frac{\cos \frac{1}{3}}{3} \right) + \cdots + \left(\frac{\cos \frac{1}{n}}{n} - \frac{\cos \frac{1}{n+1}}{n+1} \right)
\]

\[
= \cos 1 + \left(-\cos \frac{1}{2} + \cos \frac{1}{2} \right) + \cdots + \left(-\cos \frac{1}{n} + \cos \frac{1}{n} \right) - \cos \frac{1}{n+1}
\]

\[
= \cos 1 - \cos \frac{1}{n+1}.
\]

Regroup terms.

Simplify.

\[
\sum_{k=1}^{\infty} \left(\frac{\cos \frac{1}{k}}{k} - \frac{\cos \frac{1}{k+1}}{k+1} \right) = \lim_{n \to \infty} S_n
\]

\[
= \lim_{n \to \infty} \left(\cos 1 - \cos \frac{1}{n+1} \right) = \cos 1 - 1
\]

\[
\rightarrow \cos 0 = 1
\]
Practice

74. \[\sum_{k=0}^{\infty} \left(\sin \left(\frac{(k + 1)\pi}{2k + 1} \right) - \sin \left(\frac{k\pi}{2k - 1} \right) \right) \]

75. \[\sum_{k=0}^{\infty} \left(\frac{1}{4} \right)^{5^{3-k}} \]

79. \[\sum_{k=2}^{\infty} \frac{\ln \left((k + 1)k^{-1} \right)}{(\ln k)\ln (k + 1)} \]

81. \[\sum_{k=0}^{\infty} \left(3 \left(\frac{2}{5} \right)^k - 2 \left(\frac{5}{7} \right)^k \right) \]

76. \[\sum_{k=2}^{\infty} \left(\frac{3}{8} \right)^{3k} \]

77. \[\sum_{k=2}^{\infty} \left(\frac{3}{8} \right)^{3k} \]

80. \[\sum_{k=1}^{\infty} \frac{\pi^k}{e^{k+1}} \]

82. \[\sum_{k=1}^{\infty} \left(2 \left(\frac{3}{5} \right)^k + 3 \left(\frac{4}{9} \right)^k \right) \]
Divergence Test

THEOREM 10.9 Divergence Test

If $\sum a_k$ converges, then $\lim_{k \to \infty} a_k = 0$. Equivalently, if $\lim_{k \to \infty} a_k \neq 0$, then the series diverges.
THEOREM 10.11 Integral Test
Suppose f is a continuous, positive, decreasing function, for $x \geq 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$. Then

$$\sum_{k=1}^{\infty} a_k \quad \text{and} \quad \int_{1}^{\infty} f(x) \, dx$$

either both converge or both diverge. In the case of convergence, the value of the integral is not equal to the value of the series.
Consequence of the Integral Test

THEOREM 10.12 Convergence of the p-series

The p-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for $p > 1$ and diverges for $p \leq 1$.
Comparison Test

THEOREM 10.14 Comparison Test

Let $\sum a_k$ and $\sum b_k$ be series with positive terms.

1. If $a_k \leq b_k$ and $\sum b_k$ converges, then $\sum a_k$ converges.
2. If $b_k \leq a_k$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.
Theorem 10.15 Limit Comparison Test

Let $\sum a_k$ and $\sum b_k$ be series with positive terms and let

$$\lim_{k \to \infty} \frac{a_k}{b_k} = L.$$

1. If $0 < L < \infty$ (that is, L is a finite positive number), then $\sum a_k$ and $\sum b_k$ either both converge or both diverge.
2. If $L = 0$ and $\sum b_k$ converges, then $\sum a_k$ converges.
3. If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.
THEOREM 10.16 Alternating Series Test
The alternating series \(\sum (-1)^{k+1} a_k \) converges provided

1. the terms of the series are nonincreasing in magnitude (\(0 < a_{k+1} \leq a_k \), for \(k \) greater than some index \(N \)) and
2. \(\lim_{k \to \infty} a_k = 0 \).
Consequence of Alternating Series Test

THEOREM 10.17 Alternating Harmonic Series

The alternating harmonic series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \) converges (even though the harmonic series \(\sum_{k=1}^{\infty} \frac{1}{k} \) diverges).
Absolute Convergence Test

THEOREM 10.19 Absolute Convergence Implies Convergence

If $\sum |a_k|$ converges, then $\sum a_k$ converges (absolute convergence implies convergence). Equivalently, if $\sum a_k$ diverges, then $\sum |a_k|$ diverges.
Absolute vs. Conditional Convergence

DEFINITION Absolute and Conditional Convergence

If $\sum |a_k|$ converges, then $\sum a_k$ converges absolutely.

If $\sum |a_k|$ diverges and $\sum a_k$ converges, then $\sum a_k$ converges conditionally.
Ratio Test

THEOREM 10.20 Ratio Test

Let $\sum a_k$ be an infinite series, and let $r = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$.

1. If $r < 1$, the series converges absolutely, and therefore it converges (by Theorem 10.19).
2. If $r > 1$ (including $r = \infty$), the series diverges.
3. If $r = 1$, the test is inconclusive.
Root Test

Theorem 10.21 Root Test
Let $\sum a_k$ be an infinite series, and let $\rho = \lim_{k \to \infty} \sqrt[k]{|a_k|}$.

1. If $\rho < 1$, the series converges absolutely, and therefore it converges (by Theorem 10.19).
2. If $\rho > 1$ (including $\rho = \infty$), the series diverges.
3. If $\rho = 1$, the test is inconclusive.
Practice

23. \(\sum_{k=1}^{\infty} \frac{k^5}{5^k} \)

25. \(\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}e\sqrt{k}} \)

27. \(\sum_{k=1}^{\infty} \frac{3 + \cos 5k}{k^3} \)

29. \(\sum_{k=1}^{\infty} \frac{10^k + 1}{k^{10}} \)

31. \(\sum_{j=1}^{\infty} \frac{5}{j^2 + 4} \)

33. \(\sum_{k=1}^{\infty} \frac{1}{k^{1/3} \ln k} \)

35. \(\sum_{k=1}^{\infty} \frac{2k^3}{k^k} \)

24. \(\sum_{k=1}^{\infty} \frac{4}{(k + 3)^3} \)

26. \(\sum_{k=1}^{\infty} \frac{5 + \sin k}{\sqrt{k}} \)

28. \(\sum_{k=3}^{\infty} \frac{(-1)^k \ln k}{k^{1/3}} \)

30. \(\sum_{k=3}^{\infty} \frac{1}{k^3 \ln k} \)

32. \(\sum_{k=1}^{\infty} \frac{k^k}{(k + 2)^k} \)

34. \(\sum_{k=1}^{\infty} \frac{(-1)^k 5k^2}{\sqrt{3k^3 + 1}} \)

36. \(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{2k + 1}{k!} \)
Thank You!

Questions?