${ }^{\top} T{ }^{\top}$ the unversity of NEW MEXICO.

Trig and Pre-Calc $(1230,1240,1250)$ Prep

Get help in your core STEM courses，engineering \＆ computing specific classes，software，and coding languages．

ESS suite（CEC 2080）\＆online via the Penji App（with Zoom）

Tutoring schedule \＆more info at
ess．unm．edu／services／tutoring／

CENTER FOR ACADEMIC PROGRAM SUPPORT caps.unm.edu

WRITING SCIENCE MATH LANGUAGES

Online Drop-in Support
Individual Appointments

Supplemental Instruction

Learning Strategies

Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

For more information, or to apply, visit: https://ess.unm.edu/programs/current-students

Contents

-Functions and their Graphs
-Piecewise Functions
-Composition of Functions

- Inverse Functions
-Systems of Equations
- Simplifying Radicals

Functions and Their Graphs

-"Parent Functions"
-Changes to the parent functions creates different looking graphs
olmportant info about graphs can be obtained from functions
$\circ \mathrm{X}$ and Y Intercepts
-Domain and Range
-Asymptotes and Holes
-End behavior

Linear Functions

- Parent function: $y=x$
- $y=m x+b$
- $\mathrm{m}=$ slope
- $\mathrm{b}=\mathrm{y}$-intercept
- We can also solve for the x intercept
\circ Domain and range are $(-\infty, \infty)$

觜

Parabolic Functions

oParent function: $y=x^{2}$
$\mathrm{oy}=A x^{2}+B x+C$ OR $y=A(x-h)+k$
$\circ(h, k)=$ vertex
○ $C=y$-intercept

- Factor or use quadratic formula to find x-intercepts
-Domain is $(-\infty, \infty)$, range is based on the vertex

觜

Parabolic Functions

Find domain, range, x and y int's, and vertex

$$
y=x^{2}+2 x+1
$$

$y=x^{2}+2 x+1$

边

Cubic Functions

-Parent function: $y=x^{3}$
$\circ y=A x^{3}+B x^{2}+C x+D$

- $D=y$-intercept
-Factoring!!! To find x-intercept
-Domain and range are both $(-\infty, \infty)$

觜

Higher Degree Polynomial Functions

Look at degree and leading coefficient to determine shape of the function

1. Odd degree, pos LC
2. Even degree, pos LC
3. Odd degree, neg LC
4. Even degree, neg LC

Higher Degree Polynomial Functions

Look at degree and leading coefficient to determine shape of the function

$$
y=x^{12}+2 x+1
$$

$$
y=-3 x^{4}+14
$$

$$
y=\frac{1}{2} x^{5}
$$

$$
y=-x^{17}+x^{16}-x^{15}+\cdots+x
$$

Higher Degree Polynomial Functions

Look at degree and leading coefficient to determine shape of the function

$$
y=x^{12}+2 x+1
$$

$$
y=-3 x^{4}+14
$$

$$
y=\frac{1}{2} x^{5}
$$

$$
y=-x^{17}+x^{16}-x^{15}+\cdots+x
$$

$y=x^{12}+2 x+1$ (even, pos)

$$
y=-3 x^{4}+14(\text { even, neg })
$$

$$
y=\frac{1}{2} x^{5}(\text { odd, pos })
$$

$$
y=-x^{17}+x^{16}-x^{15}+\cdots+x(\text { odd, neg }
$$

觜

Rational Functions

-A ratio (fractions) of two polynomial functions

- Parent function: $y=\frac{1}{x}$
- Vertical Asymptotes: set denominator equal to zero
- Horizonal Asymptotes: Look at end behavior
- Boss on bottom
- Boss on top
- Leading coefficients
- Holes: $\frac{0}{0}$ when $\mathrm{x}=0$
-Domain and range come from asymptotes/holes

Rational Functions

Find x and y int's, HA, VA, holes, domain, and range

$$
y=\frac{x^{2}+3 x}{x^{2}-x}
$$

$$
y=\frac{x^{2}+3 x}{x^{2}-x}
$$

边

Exponential and Logarithmic Functions

-Exponential $y=e^{x}$

- Has a horizontal asymptote
- Logarithmic $y=\log (x)$
- Has a vertical asymptote
olnverses of each other

Absolute Value Functions

$o y=|x|$
-Absolute value means take the "positive part" of the number or distance from zero
-Think about it as a piecewise function

$$
f(x)=\left\{\begin{aligned}
-x, & x<0 \\
x, & x \geq 0
\end{aligned}\right.
$$

N

Piecewise Functions

oA function that is defined on a sequence of intervals
-Domain, range, holes, etc depend on what is included in the intervals

Piecewise Functions

$f(x)=\left\{\begin{array}{c}2 x, x<0 \\ 1-x, 0<x \leq 4 \\ x^{2}, x>4\end{array}\right.$

Find x and y intercepts, domain and range
Is 0 included? Is 4 ?
$f(x)=\left\{\begin{array}{c}2 x, x<0 \\ 1-x, 0<x \leq 4 \\ x^{2}, x>4\end{array}\right.$

边

Composition of Functions

-The output of one function becomes the input of another
$\circ f(g(x))=(f \circ g)(x)$
-"F composed with G of x "
○"F of G of x "
-Work from the inside out

Composition of Functions

Compose the following functions as both $g \circ f$ and $f \circ g$ $f(x)=3 x+1 ; g(x)=x^{2}-6$

Inverse Functions

oA function that "undoes" the action of another function
-Domain and range is flipped from original function
oFind inverse functions by:
-Swapping x and y
-Solving for y

Inverse Functions

Find the inverse of the following functions:
$f(x)=5 x+10$

NHI

Solving Systems of Equations

-Elimination Method
o"Handcuff" the equations together
oSubstitution Method
olsolate a variable in one equation and substitute it into the other
oSolutions that apply to both equations

- Used to find where two lines intersect

Solving Systems of Equations

Solve the following system using elimination

$$
10 x+12 y=-26
$$

$-6 x+6 y=-24$

Solving Systems of Equations

Solve the following system using substitution
$x+3 y=18$
$y=-4 x+6$

Simplifying Radicals

oFind perfect squares within the radicals to take out
oFractional exponents = radicals
oNote - negative exponents can be moved to the denominator

Simplifying Radicals
 $\sqrt{32}$

$2^{\frac{4}{3}}$
$x^{-\frac{1}{2}}$

边

Study Tips

What you can do before the semester

Mentality	Be proactive
Review	Review the self-evaluation
Explore	Explore online resources
Converse	Talk to your professor and TA
Locate	Find resources on campus, such as CTL and tutoring
Study	Form a study group, develop a study plan

Throughout the semester

GO TO CLASS

STAY ON TOP OF HOMEWORK

GO TO PROFESSOR AND TA OFFICE HOURS, CTL, CALC TABLE.

Start Your Semester Off Right Join us for a FREE

Pre-Semester Prep Workshop Series

