Start Your Semester Off Right Join us for a FREE

Pre-Semester Prep Workshop Series

These interactive workshops will review all foundational material leading up to the specified course so you are better equipped to hit the ground running.

Synchronous in-person in the ESS suite

> \& virtual via Zoom

Physics 1 Prep (for PHYS 1310)

Presented by:
Bryan \& Paul Tice

Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

MENTORING

- BE a mentor
...to our incoming students in their transition into the University of New Mexico, the university setting, and Albuquerque
- HAVE a mentor*
...who is a STEM Professiona working in the field to build your network and receive guidance and support.
 *This program is open to UNM STEM
Majors. Priority is given to Freshmen and
Sophomores, but all levels are encouraged to Sophomores, but all levels are encouraged to

For more information, or to apply, visit: https://ess.unm.edu/programs/current-students

A tool for

 engineering your
SUCCESS

This web APP allows you to keep up to date on all we have to offer.

Put your learning into your own hands.号pin

N

Coffee Hour with Faculty - Fall Break
How to make the most of your learning How to re-discover your confidence

Manage Your Time
Spatial Visualization Series
Orthographic Views \& Isometric Drawing
One-Axis and Two-Axis Rotations
Incl. Planes \& Curved Surfaces, Reflect. Sym., \& Write a Rule Interviewing Basics
STEM Mixer \& Industry Networking Social
Graduate School Preparation Workshop
Landing an Internship
Resume Critique \& Mock Interviews Leadership in Engineering
.and industry site visits...
Lab Safety Series

TTT ENGINEERING STUDENT
 SUCCESS CENTER

Outline

- Units
- Graphs
- Motion
- Geometry/Trigonometry in physics
- How to approach word problems

A standard of measurement of physical quantities

What are Units?

Scalar

What are physical quantities?

STIMULATING WORK

DETERMINATION

EMPATHY

COURAGE

PROBLEM SOLVING

THOUGHTFULNESS

STRATEGIC PLANNING

VISIONARY

COMMUNICATION

INSPIRATION

POSITIVITY

HONESTY

EXPERTISE

DISCIPLINE

What are NON-physical quantities?

What are SI units?

Base Quantity	Name	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	s
Electric Current	Ampere	A
Temperature	Kelvin	K
Amount of Substance	Mole	mol
Luminous Intensity	candela	cd

Helpful Website: National Institute of Standards and Technology https://physics.nist.gov/cuu/Units/units.html

Fundamental Base SI Units

Velocity $=+25 \mathrm{~m} / \mathrm{s}$
Density $=\mathrm{kg} / \mathrm{m}^{3}$

Derived Quantities

Scalar

Vector

Scalar and Vector quantities

Is density scalar or vector?

Problem 1: Scalar/Vector

Is Time (seconds) fundamental or derived?

Problem 2: Fundamental vs derived

$$
\begin{gathered}
\text { Is Area }\left(m^{2}\right) \\
\text { "fundamental or } \\
\text { derived?" }
\end{gathered}
$$

Problem 3: Fundamental vs derived

What does 2500 m equal to in km?

Problem 4: Unit conversions - Dimensional Analysis

What does 2500 m equal to in km ?

Problem 4: Unit conversions - Dimensional Analysis

$$
\begin{aligned}
& \text { What is } 10^{g} / \mathrm{cm}^{3} \\
& \text { equal to in }{ }^{\mathrm{kg}} / \mathrm{m}^{3} ?
\end{aligned}
$$

Problem 5: Unit conversions - Dimensional Analysis

What is $10 \mathrm{~g} / \mathrm{cm}^{3}$ equal to $\mathrm{in}^{\mathrm{kg} / \mathrm{m}^{3}}$?

Problem 5: Unit conversions - Dimensional Analysis

Graphs
(Independent variable) causes a change in (Dependent Variable) and it isn't possible that
(Dependent Variable) could cause
a change in (Independent Variable)
The Basics

How to read a graph

Motion

Distance-Time Graphs

Variable Speed

Average and instantaneous speed

Geometry \& Trig in Physics

Basic Trigonometric Functions

SOH CAH TOA Rule

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Theorem

Memorizing the Unit Circle. Ms. Pruitt's Left-Hand Trick. https://youtu.be/LE6dmczMc68

The Unit Circle

https://youtu.be/LE6dmczMc68

Special Triangles

Road

Determine the Magnitude and direction

Road

Determine the Magnitude and direction

Road

Determine the Magnitude and direction

A Force is a push or a pull that causes an object with mass to move faster (accelerate), or slower (decelerate), change direction, or deform.

Forces

Forces

Forces

Types of Forces:

>Applied Force
-Pull (Tension)
-Push (Compression)
$>$ Normal Force (Perpendicular to the Surface)
$>$ Drag Force (Resistance to motion in Air or Water)
$>$ Friction (Always moves opposite to motion)
$>$ Spring Force
$>$ Weight (mass * acceleration)
Types of Forces

Force=Mass*Acceleration

$$
\begin{gathered}
{[N]=[k g] *\left[\frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right]} \\
\sum \vec{F}=m \vec{a}
\end{gathered}
$$

Sir Isaac Newton and Newton's Second Axiom

A uniform ladder 5 m lons
weighing 200\$ is leaning against $a \sqrt{\text { smooth vertical walty with its base }}$ m from the watl. The coefficient of static friction between the bottom of the ladder and the ground (s 0.4. Hon far, measured
 along the ladder, can 600 Nman climb before the ladder starts to slip?

Word Problems

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Geometry

Circle: circumference $=2 \pi R$, area $=\pi R^{2}$
Sphere: area $=4 \pi R^{2}$, volume $=4 \pi R^{3} / 3$

Trigonometry

$$
\sin \alpha=\frac{A}{C}, \quad \cos \alpha=\frac{B}{C}
$$

$$
\tan \alpha=\frac{A}{B}
$$

$$
\begin{gathered}
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C} \\
A^{2}+B^{2}-2 A B \cos \gamma=C^{2}
\end{gathered}
$$

$P E=-G \frac{M m}{r}, \Delta P E=m g h($ small $h), F=G \frac{M m}{r^{2}}=m g$

$$
a=\frac{v^{2}}{r}, \frac{G M}{4 \pi^{2}}=\frac{R^{3}}{T^{2}}
$$

Rotational Motion \& Gravity

$$
\begin{gathered}
v=\omega r=\frac{2 \pi r}{T}, \quad \omega=2 \pi f=\frac{2 \pi}{T}, f=1 / T \\
\alpha=\frac{\omega_{f}-\omega_{0}}{t}=\frac{a}{r}
\end{gathered}
$$

$$
L=I \omega=m v r \sin \theta,(\theta=\text { angle between } \mathrm{v} \text { and } \mathrm{r})
$$

$$
K E=\frac{L^{2}}{2 I}=\frac{1}{2} I \omega^{2}
$$

$$
\tau=r F \sin \theta, I \alpha=\tau, I_{\text {point }}=m R^{2}
$$

$$
I_{\text {cyl.shell }}=m R^{2}, I_{\text {spbere }}=\frac{2}{5} m R^{2} I_{\text {solid cyl. }}=\frac{1}{2} m R^{2} .
$$

Gases, liquids and solids

As you go along...Formula Sheet

A bus traveled on a level road for 6 hours at an average speed 20 miles per hour faster than it traveled on a winding road. The time spent on the winding road was 3 hours. Find the average speed on the level road if the entire

Step 2: Draw a picture

A rectangular field is to be fenced off next to a straight wall, with fencing on three sides, with the wall making the fourth side. Exactly 150 feet of fencing is to be used. Express the area of the field as a function of its width.

Given:

$$
\begin{aligned}
& P=150 \mathrm{ft} \\
& x=\text { width } \\
& y=\text { length }
\end{aligned}
$$

Step 3: Identify given information

Three coffees and two muffins cost a total of 7 dollars. Two coffees and four muffins cost 8 dollars. What is the individual price for a single coffee and a single muffin?
Let $\mathrm{x}=$ cost of a single coffee
Let $y=$ cost of a single muffin

Step 4: Identify the unknowns

Step 5: Begin strategizing for the answer based on the given information

What is the average velocity of the car if it travels 60 km in 1.5 hours?

Word Problem 1

What is the average velocity of the car if it travels 60 km in 1.5 hours?

Word Problem 1

Displacement: $=x_{2}-x_{1}=60 \mathrm{~km}$ Time $=1.5$ hours

Average Velocity $=$ Displacement $/$ Time

x_{1}
 x_{2}

Word Problem 1

A plane lands at a speed of $68 \mathrm{~m} / \mathrm{s}$ and slows down at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. How much runway is needed to stop the plane?

Word Problem 2

A plane lands at a speed of $68 \mathrm{~m} / \mathrm{s}$ and slows down at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. How much runway is needed to stop the plane?
$\boldsymbol{x}_{\text {initial }}$
$t_{\text {initial }}$

0 m $\quad x_{\text {final }}$

$0 \mathrm{~s} \quad t_{\text {final }}$
$v_{\text {initial }} \quad 68 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{\text {final }}$
$0 \frac{m}{s}$
$a_{\text {initial }}$

Word Problem 2

A plane lands at a speed of $68 \mathrm{~m} / \mathrm{s}$ and slows down at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. How much runway is needed to stop the plane?

$x_{\text {initial }}$	0 m	$x_{\text {final }}$	
$t_{\text {initial }}$	0 s	$t_{\text {final }}$	
$v_{\text {initial }}$	$68 \frac{m}{s}$	$v_{\text {final }}$	$0 \frac{m}{s}$
$a_{\text {initial }}$	$4 \frac{m}{s^{2}}$	$a_{\text {final }}$	$4 \frac{m}{s^{2}}$

$$
x_{1}=0 \mathrm{~m} \quad x_{2}
$$

Word Problem 2: Write all the given quantites

A plane lands at a speed of $68 \mathrm{~m} / \mathrm{s}$ and slows down at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. How much runway is needed to stop the plane?

$x_{\text {initial }}$	0 m	$x_{\text {final }}$	578 m
$t_{\text {initial }}$	0 s	$t_{\text {final }}$	17 s
$v_{\text {initial }}$	$68 \frac{\mathrm{~m}}{\mathrm{~s}}$	$v_{\text {final }}$	$0 \frac{\mathrm{~m}}{\mathrm{~s}}$
$a_{\text {initial }}$	$4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	$a_{\text {final }}$	$4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

$\xrightarrow[0]{2}$

$$
x_{1}=0 \mathrm{~m} \quad x_{2}
$$

Word Problem 2: Write all the given quantites

Questions？

goto．unm．edu／ess－feedback

$4)^{5}$ You Tube＠UNMESSCENTER

Don＇t forget to follow up on social media．

TTY ENGINEERING STUDENT SUCCESS CENTER

