Welcome!

Start Your Semester Off Right
Join us for a FREE
Pre-Semester Prep Workshop Series

These interactive workshops will review all foundational material leading up to the specified course so you are better equipped to hit the ground running.

Synchronous in-person in the ESS suite & virtual via Zoom

<table>
<thead>
<tr>
<th>Workshop</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Algebra Review</td>
<td>Monday, January 9, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Pre-Calculus/Trig Review</td>
<td>Tuesday, January 10, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Calculus 1 Review</td>
<td>Wednesday, January 11, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Calculus 2 Review</td>
<td>Thursday, January 12, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Physics 1 Prep</td>
<td>Friday, January 13, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Chemistry 1 Prep</td>
<td>Friday, January 13, 2023</td>
<td>1 - 3 PM</td>
</tr>
</tbody>
</table>

*Attend these sessions & give feedback for access to a general knowledge exam.

RSVP is preferred but not required

ess.unm.edu/events > January

or through our web-app • succESS

Physics 1 Prep
(for PHYS 1310)

Presented by:
Bryan & Paul Tice
Drop-In Tutoring for Engineering & Computing

Get help in your core STEM courses, engineering & computing specific classes, software, and coding languages.

ESS suite (CEC 2080) & online via the Penji App (with Zoom)

Tutoring schedule & more info at ess.unm.edu/services/tutoring/
or through our app - succESS
Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

MENTORING

- **BE a mentor**
 ...to our incoming students in their transition into the University of New Mexico, the university setting, and Albuquerque.

- **HAVE a mentor**
 ...who is a STEM Professional working in the field to build your network and receive guidance and support.

This program is open to UNM STEM Majors. Priority is given to Freshmen and Sophomores, but all levels are encouraged to apply.

INTERNSHIPS

Getting real-world experiences leads to your satisfaction with your undergraduate journey. Gain valuable hands-on experience while making professional connections.

These programs are only open to School of Engineering Students.

RESEARCH

- **EPICS @UNM**
 ...to give back to the community, earn credit, and gain research experience all at the same time!

- **Student Research Experience Program**
 ...to get hands-on research experience to understand how your courses fit in to real-world applications.

These programs are only open to School of Engineering Students.

For more information, or to apply, visit:
https://ess.unm.edu/programs/current-students
A tool for engineering your success.

Put your learning into your own hands.

success.unm.edu Includes 1-click RSVP

Spring 2023 Events

- **Pre-Semester Prep Series**
 - Physics 1, Chem 1, Trig/pre-Calc through Calc 3

- **Semester Long Programs**
 - Mentoring, Internships, Research

- **Presentation Prep Series**
 - What is a Conference?
 - Designing Effective Presentations
 - Data Visualization
 - Delivering Presentations

- **1st & 2nd Year Student Events**
 - Building Community - Weekly focused Study Groups
 - How to make the most of your learning
 - Twitch streaming event
 - Study Skills
 - Manage Your Time
 - Shadow Day
 - CAD Basics
 - Coffee Hour with Faculty
 - How to be more assertive
 - UROC - Attendance Participation

- **Spatial Visualization Series**
 - Recap of sessions 1-3 from the Fall semester
 - Two-Axis Rotations and Inclined Planes & Curved Surfaces
 - Reflection Symmetry & Write a Rule

- **Career and Professional Development Events**
 - Landing an internship
 - So, What’s Next? Start-Ups, Patents, and Publications
 - STEM Mixer & Find Your Pack
 - Interviewing Basics
 - Building Connections & Networking
 - Resumes and Cover Letters
 - Industry site visits

- **Lab Safety Series**
 - Hazard Communication & Hazard Evaluation
 - Hierarchy of Controls & Basics of PPE
 - Chemical Waste Management

 WIN a gift card. GAIN experience.
 BUILD your skill set. ENHANCE your resume.

And more! For more details, visit: ess.unm.edu/events OR through our web-app - essESS.
Outline

• Units
• Graphs
• Motion
• Geometry/Trigonometry in physics
• How to approach word problems
Units
A standard of measurement of physical quantities
What are physical quantities?
What are NON-physical quantities?
What are SI units?
<table>
<thead>
<tr>
<th>Base Quantity</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td>Electric Current</td>
<td>Ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperature</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Amount of Substance</td>
<td>Mole</td>
<td>mol</td>
</tr>
<tr>
<td>Luminous Intensity</td>
<td>candela</td>
<td>cd</td>
</tr>
</tbody>
</table>

Helpful Website: National Institute of Standards and Technology
https://physics.nist.gov/cuu/Units/units.html

Fundamental Base SI Units
Velocity = +25 m/s

Density = kg/m3
Scalar and Vector quantities

Scalar:
- Volume
- Time
- Temperature
- Speed

Vector:
- Weight
- Thrust
- Magnetic field
- Velocity
What does 2500 m equal to in km?
What is $10 \frac{g}{cm^3}$ equal to in $\frac{kg}{m^3}$?
Is density scalar or vector?
Is Time (seconds) fundamental or derived?
Is Area (m^2) "fundamental or derived?"

Problem 5: Fundamental vs derived
(Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable)
How to read a graph

Slope = \frac{Y_2 - Y_1}{X_2 - X_1}

Distance (m)

Time (min)
On a Velocity vs. Time graph, any time the line crosses the “x” axis, the object is changing direction.
Variable Speed
Average and instantaneous speed
Geometry & Trig in Physics
Basic Trigonometric Functions

SOH: \(\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} \)

CAH: \(\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} \)

TOA: \(\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} \)
\[
\sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} \quad \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} \quad \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}}
\]
Pythagorean Theorem

\[a^2 + b^2 = c^2 \]
\[
\sin(\theta) = \cos(90^\circ - \theta)
\]

\[(\cos(\theta), \sin(\theta))\]

Pythagoras Theorem for physical quantities

$\sqrt{\frac{5^3}{2}}$

$\left(\frac{1}{2}, \frac{3}{2}\right)$

https://youtu.be/LE6dmczMc68
Special Triangles

45-45-90 Triangle

30-60-90 Triangle

3-4-5 Triangle

5-12-13 Triangle
Determine the Magnitude and direction
Determine the Magnitude and direction of the 5 km journey.
Determine the Magnitude and direction
Trigonometry of inclined planes

Forces

Diagram showing forces and angles on an inclined plane.
A **Force** is a push or a pull that causes an object with mass to move faster (accelerate), or slower (decelerate), change direction, or deform.
Forces are vector quantities because they have a magnitude and direction.
Types of Forces:

- Applied Force
- Pull (Tension)
- Push (Compression)
- Normal Force (Perpendicular to the Surface)
- Drag Force (Resistance to motion in Air or Water)
- Friction (Always moves opposite to motion)
- Spring Force
- Weight (mass * acceleration)
Sir Isaac Newton and Newton’s Second Axiom

Force = **Mass** * **Acceleration**

\[N = kg \times \left(\frac{m}{s^2} \right) \]

\[\sum \vec{F} = m\vec{a} \]
A uniform ladder 5 m long weighing 200 N is leaning against a smooth vertical wall with its base 3 m from the wall. The coefficient of static friction between the bottom of the ladder and the ground is 0.4. How far, measured along the ladder, can a 600 N man climb before the ladder starts to slip?
As you go along… Formula Sheet

Quadratic Formula

\[a x^2 + bx + c = 0 \]
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Geometry
Circumference = \(2\pi R\), area = \(\pi R^2\)
Sphere: area = \(4\pi R^2\), volume = \(4\pi R^3 / 3\)

Trigonometry

\[
\sin \alpha = \frac{A}{C}, \quad \cos \alpha = \frac{B}{C}
\]
\[
\tan \alpha = \frac{A}{B}
\]

Rotational Motion & Gravity

\[
v = \omega r = \frac{2\pi r}{T}, \quad \omega = \frac{2\pi}{T}, f = \frac{1}{T}
\]
\[
\alpha = \frac{\omega_f - \omega_0}{t} = \frac{a}{r}
\]
\[
L = I\omega = mvr \sin \theta, \quad (\theta = \text{angle between } v \text{ and } r)
\]
\[
KE = \frac{L^2}{2I} = \frac{1}{2} I\omega^2
\]
\[
\tau = rF \sin \theta, \quad I\alpha = \tau, \quad I_{\text{point}} = mR^2
\]
\[
I_{\text{cyl. shell}} = mR^2, \quad I_{\text{sphere}} = \frac{2}{5} mR^2, \quad I_{\text{solid cyl.}} = \frac{1}{2} mR^2
\]

Gases, liquids and solids

\[
p \cdot V = nRT
\]

Polar Coordinates
A bus traveled on a level road for 6 hours at an average speed 20 miles per hour faster than it traveled on a winding road. The time spent on the winding road was 3 hours. Find the average speed on the level road if the entire trip was 462 miles.

Step 1: Identify variables/physical quantities.
Step 2: Draw a picture
A rectangular field is to be fenced off next to a straight wall, with fencing on three sides, with the wall making the fourth side. Exactly 150 feet of fencing is to be used. Express the area of the field as a function of its width.

Given:

\[p = 150 \text{ ft} \quad (3 \text{ sides}) \]
\[x = \text{width} \]
\[y = \text{length} \]
Step 4: Identify the unknowns

Three coffees and two muffins cost a total of 7 dollars. Two coffees and four muffins cost 8 dollars. What is the individual price for a single coffee and a single muffin?

Let $x =$ cost of a single coffee
Let $y =$ cost of a single muffin
Step 5: Begin strategizing for the answer based on the given information
What is the average velocity of the car if it travels 60 km in 1.5 hours?
Displacement: \(= x_2 - x_1 = 60 \text{ km} \)
Time = 1.5 hours

Average Velocity = Displacement / Time
A plane lands at a speed of 68 m/s and slows down at a rate of 4m/s^2. How much runway is needed to stop the plane?
Word Problem 2: Write all the given quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0 m</td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>0 s</td>
<td></td>
</tr>
<tr>
<td>(v)</td>
<td>68 m/s</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>4 m/s²</td>
<td>4 m/s²</td>
</tr>
</tbody>
</table>

Initial quantities:
- Initial position: 0 m
- Initial time: 0 s
- Initial velocity: 68 m/s
- Initial acceleration: 4 m/s²

Final quantities:
- Final position: 0 m
- Final time: 0 s
- Final velocity: 0 m/s
- Final acceleration: 4 m/s²
Word Problem 2
A plane lands at a speed of 68 m/s and slows down at a rate of 4 m/s2. How much runway is needed to stop the plane?

<table>
<thead>
<tr>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{initial}</td>
<td>0 m</td>
</tr>
<tr>
<td>t_{initial}</td>
<td>0 s</td>
</tr>
<tr>
<td>v_{initial}</td>
<td>$68 , \text{m/s}$</td>
</tr>
<tr>
<td>a_{initial}</td>
<td>$4 , \text{m/s}^2$</td>
</tr>
<tr>
<td>x_{final}</td>
<td></td>
</tr>
<tr>
<td>t_{final}</td>
<td></td>
</tr>
<tr>
<td>v_{final}</td>
<td>$0 , \text{m/s}$</td>
</tr>
<tr>
<td>a_{final}</td>
<td>$4 , \text{m/s}^2$</td>
</tr>
</tbody>
</table>

$x_1 = 0 \text{m}$
A plane lands at a speed of 68 m/s and slows down at a rate of 4m/s². How much runway is needed to stop the plane?

\[x_{\text{initial}} = 0 \text{ m} \quad \quad x_{\text{final}} = 578 \text{ m} \]

\[t_{\text{initial}} = 0 \text{ s} \quad \quad t_{\text{final}} = 17 \text{ s} \]

\[v_{\text{initial}} = 68 \frac{\text{m}}{\text{s}} \quad \quad v_{\text{final}} = 0 \frac{\text{m}}{\text{s}} \]

\[a_{\text{initial}} = 4 \frac{\text{m}}{\text{s}^2} \quad \quad a_{\text{final}} = 4 \frac{\text{m}}{\text{s}^2} \]

\[x_1 = 0 \text{ m} \quad \quad x_2 \]

Word Problem 2: Write all the given quantities.
Start Your Semester Off Right
Join us for a **FREE**

Pre-Semester Prep Workshop Series

These interactive workshops will review all foundational material leading up to the specified course so you are better equipped to hit the ground running.

Synchronous In-person in the ESS suite & virtual via Zoom

<table>
<thead>
<tr>
<th>Workshop</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>*College Algebra Review</td>
<td>Monday, January 9, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>(Pre-Calc/Trig Prep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Pre-Calc/Trig Review</td>
<td>Tuesday, January 10, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>(Calc 1 Prep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Calc 1 Review</td>
<td>Wednesday, January 11, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>(Calc 2 Prep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calc 2 Review</td>
<td>Thursday, January 12, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>(Calc 3 Prep)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Physics 1 Prep</td>
<td>Friday, January 13, 2023</td>
<td>10 AM - 12 PM</td>
</tr>
<tr>
<td>Chem 1 Prep</td>
<td>Friday, January 13, 2023</td>
<td>1 - 3 PM</td>
</tr>
</tbody>
</table>

*Attend these sessions & give feedback for access to a general knowledge exam.

RSVP is preferred but not required

ess.unm.edu/events > January or through our web-app - succESS
Questions?

Give feedback.
Win a gift certificate!

goto.unm.edu/ess-feedback

Don’t forget to follow up on social media.

ENGINERGING STUDENT SUCCESS CENTER
ess.unm.edu or our succESS web-app