Start Your Semester Off Right Join us for a FRFE

Pre-Semester Prep Workshop Series

These interactive workshops will review all foundational material leading up to the specified course so you are better equipped to hit the ground running.

Synchronous in-person in the ESS suite
\& virtual via Zoom

CHEM 1 Prep (for CHEM 1215)

Presented by:
Ethan Krammer
${ }^{*}$ Attend these sessions \& give feedback for access to a general knowledge exam.

TT ENGINEERING STUDENT

Drop-ln-Itutoring for bngmeering \& Computing

Get help in your core STEM courses, engineering \& computing specific classes, software, and coding languages.

ESS suite (CEC 2080) \& online via the Penji App (with Zoom)

NT ENGINEERING STUDENT SUCCESS CENTER

Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

MENTORING

- BE a mentor
...to our incoming students in their transition into the University of New Mexico, the university setting, and Albuquerque
- HAVE a mentor*
...who is a STEM Professiona working in the field to build your network and receive guidance and support.
 *This program is open to UNM STEM
Majors. Priority is given to Freshmen and
Sophomores, but all levels are encouraged to Sophomores, but all levels are encouraged to

For more information, or to apply, visit: https://ess.unm.edu/programs/current-students

A tool for

 engineering your
SUCCESS

This web APP allows you to keep up to date on all we have to offer．

Put your learning into your own hands．号pin

N

Coffee Hour with Faculty－Fall Break
How to make the most of your learning How to re－discover your confidence

Manage Your Time
Spatial Visualization Series
Orthographic Views \＆Isometric Drawing
One－Axis and Two－Axis Rotations
Incl．Planes \＆Curved Surfaces，Reflect．Sym．，\＆Write a Rule Interviewing Basics
STEM Mixer \＆Industry Networking Social
Graduate School Preparation Workshop
landing an Internship
Resume Critique \＆Mock Interviews Leadership in Engineering
．and industry site visits．．．
Lab Safety Series

TV ENGINEERING STUDENT
 SUCCESS CENTER

Outline

- What is Chemistry
- Definitions
- Discuss Atoms, Matter, and Why they Matter.
- Physical Properties
- Units
- Accuracy \& Precision
- Calculators in Chemistry

What is Chemistry?

Was it any of these?

chemistry /'kem.ə.stri/

From the word alchemy, the scientific study of the basic characteristics of substances and the ways in which they react or combine.

Elements

Molecules

Physical Properties

A physical property describes a characteristic of a substance that can be observed or measured

Mass

Weight

Volume

Density

What's the Matter?

A standard of measureme physical quantities

What are Units?

Physical Quantities

Base Quantity	Name	Symbol
Length	Meter	m
Mass	Kilogram	kg
Time	Second	s
Electric Current	Ampere	A
Temperature	Kelvin	K
Amount of Substance	Mole	mol
Luminous Intensity	candela	cd

What is a mole?

1 mol
 $=6.022 \times 10^{23}$ items

Important Conversion Factors for Chemistry

Accuracy
 vs

Precision

Must have a STANDARD or KNOWN values for reference.

Accuracy

High Accuracy High Precision

Low Áccuracy High Psecision

High Ac uracy Low Precision

Low Aŋuracy Low Peccision

Accuracy and Precision

Significant Digits

All nonzero digits are significant

$$
\begin{aligned}
& 1.234 \mathrm{~g}=4 \text { sig. fig. } \\
& 1.2 \quad \mathrm{~g}=2 \text { sig. fig. }
\end{aligned}
$$

What about zero?

Zeros between non-zeros are always significant
$1002 \mathrm{~kg}=4$ sig. fig.
$3.01 \mathrm{~mL}=3$ sig. fig.

Leading zeros are NOT significant
$0.001^{\circ} \mathrm{C}=1$ sig. fig.
$0.012 \mathrm{~g}=2$ sig. fig.

Trailing zeros (when decimals are present) ARE significant
$0.0230 \mathrm{~mL}=3$ sig. fig.
$0.20 \mathrm{~g}=2$ sig. fig.

50,600 calories $=3,4$, or 5 sig. fig.?
$=2$ or 3 sig. fig.?

Uncertainty and Decimals

How many Significant Digits are in each number?

a) 0.0035
2 sig fig
b) 1.080
4 sig fig
c) 2371
4 sig fig or more, depending on what adding a decimal
d) $2.97 \times 10^{5} \quad 3$ sig fig
e) 100.00
5 sig fig
f) 100,000
Ambiguous

Significant Digits Practice

SCIENTIFIC NOTATION

$120,000,000,000,000,000,000,000$ Standard Notation

${ }_{\text {Scientific }} 1.2 \times \underset{\text { Notation }}{10^{23}}$

A POSITIVE exponent means the original number was large.

$46,600,000=4.66 \times 10^{7}$

A NEGATIVE exponent means the original number was small.

$$
0.00053=5.3 \times 10^{-4}
$$

Prefix	Symbol	Multiply Base Unit by	Skample
tera	T	$1,000,000,000,000$	teragram $=\mathrm{Tg}=10^{12} \mathrm{~g}$
giga	G	$1,000,000,000$	gigaliter $=\mathrm{GL}=10^{\circ} \mathrm{L}$
mega	M	$1,000,000$	megagram $=\mathrm{Mg}=10^{6} \mathrm{~g}$
kilo	k	1,000	kilogram $=\mathrm{kg}=10^{1} \mathrm{~g}$
hecto	h	100	hectogram $=\mathrm{hm}=10^{2} \mathrm{~m}$
deka	da	10	decagram $=\mathrm{dag}=10 \mathrm{~g}$
deci	d	$\mathrm{I} / 10$	deciliter $=\mathrm{dL}=10^{-1} \mathrm{~L}$
centi	c	$\mathrm{I} / 100$	centimeter $=\mathrm{cm}=10^{-2} \mathrm{~g}$
milli	m	$\mathrm{I} / 1000$	millimeter $=\mathrm{mm}=10^{-3} \mathrm{~m}$
micro	μ	$\mathrm{I} / 1,000,000$	microgram $=\mu \mathrm{g}=10^{-1} \mathrm{~g}$
nano	n	$\mathrm{I} / 1,000,000,000$	nanoliter $=\mathrm{nL}=10^{-9} \mathrm{~L}$
pico	p	$\mathrm{I} / 1,000,000,000,000$	picogram $=\mathrm{pg}=10^{-12} \mathrm{~g}$
femto	f	$\mathrm{I} / 1,000,000,000,000,000$	femtomole $=$ fmol $=10^{-15} \mathrm{~mol}$

A uniform ladder 5 m lons
weighing 200\$ is leaning against $a \sqrt{\text { smooth vertical walty with its base }}$ m from the watl. The coefficient of static friction between the bottom of the ladder and the ground (s 0.4. Hon far, measured
 along the ladder, can 600 Nman climb before the ladder starts to slip?

Word Problems

Find

Solution

A bus traveled on a level road for 6 hours at an average speed 20 miles per hour faster than it traveled on a winding road. The time spent on the winding road was 3 hours. Find the average speed on the level road if the entire-

Step 1: Identify Given Information

Three coffees and two muffins cost a total of 7 dollars. Two coffees and four muffins cost 8 dollars. What is the individual price for a single coffee and a single muffin?
Let $\mathrm{x}=$ cost of a single coffee
Let $y=$ cost of a single muffin

Step 2: Identify the unknowns

Step 3: Begin strategizing for the answer based on the given information

Fence Post Method

Dimensional Analysis

Conversion Factors
A relationship in the form of an equality.

7days 1wk
60sec 1 min
12in
1ft

A single $\$ 100$ bill (large unit) has $100 \$ 1$ bills (small unit).

Both have the same value total value.

How many pennies are in 100.00 dollars?

Given:
We have $\$ 100.00$
We know $\$ 1.00=100$ pennies
Find
Quantity of pennies in $\$ 100.00$
Solution:
Make a fence post and solve it

$\$ 100$	100 pennies	10,000 pennies	$=$ Multiply top row straight across and record your answer
	$\$ 1$	1 unitless	= Multiply bottom row straight across and record your answer

$1 \mathrm{~mol}=6.022 \times 10^{23}$ quantity

1. Casio FX115ESPLUS scientific calculator
2. Texas Instruments Tl-36X Pro

> Calculators

Calculate the number of molecules in 3.25 moles of H 2 O .
Solution: $(3.25$ moles $) \times\left(6.022 \times 10^{\wedge} 23\right.$ mole $\left.^{\wedge}-1\right)=1.96 \times 10^{\wedge} 24$ molecules

Multistep Dimensional Analysis

Using Your Calculator

Some calculators have ^ key, and you can enter 10^23.

A jeweler offers to sell a ring to a person and tells them it is made of pure platinum. The person notices that the ring feels light and decides to perform a density test to determine if the ring is pure platinum. The ring is placed on a scale and found to have a mass of 5.84×10^{-3}
kg . Then placed in a cup of water the ring
displaces $5.56 \times 10^{-7} \mathrm{~m}^{3}$. The density of
platinum is $21.4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$. Is the ring real?

A jeweler offers to sell a ring to a person and tells them it is made of pure platinum. The person notices that the ring feels light and decides to perform a density test to determine if the ring is pure platinum.

The ring is placed on a scale and found to have a mass of $5.84 \times 10^{-3} \mathrm{~kg}$. Then placed in a cup of water the ring displaces $5.56 \times 10^{-7} \mathrm{~m}^{3}$. The density of platinum is 21.4 $\frac{g}{\mathrm{~cm}^{3}}$. Is the ring real?

Given:

$\mathrm{m}=5.84 \times 10^{-3} \mathrm{~kg}$
$\mathrm{V}=5.56 \times 10^{-7} \mathrm{~m}^{3}$

Density of platinum is $21.4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

Find: Determine if Density of ring = Density of Platinum

Recall $d=\frac{m}{V}$

N

Conversion Factors Needed $1 \mathrm{~kg}=1000 \mathrm{~g}$
 $1 \mathrm{~m}=100 \mathrm{~cm}$

$d=\frac{m}{V}=\frac{5.84 \times 10^{-3} \mathrm{~kg}}{5.56 \times 10^{-7} \mathrm{~m}^{3}} * \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} * \frac{1 \mathrm{~m}^{3}}{(100)^{3} \mathrm{~cm}^{3}}$

$$
d=\frac{m}{V}=\frac{5.84 \mathrm{~g}}{0.556 \mathrm{~cm}^{3}}=10.5 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Recall the Density of pure platinum is $21.4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

Thus, the ring is fake!

罗

Tips for Success

It will not be enough to simply read the book, attend lectures, or watch videos on YouTube.
You must PRACTICE!
You must Solve Problems on your own!

Questions？

goto．unm．edu／ess－feedback

$\xi \overbrace{}^{9} \underset{T}{\text { Yoube }}$＠UNMESSCENTER

Don＇t forget to follow up on social media．

TT ENGINEERING STUDENT SUCCESS CENTER

