$\xrightarrow[\text { Calculus } 3 \text { (2531) Prep }]{\substack{\text { ThE UNIVERSITY OF } \\ \text { NEW MEXICO. }}}$

Get help in your core STEM courses，engineering \＆ computing specific classes，software，and coding languages．

ESS suite（CEC 2080）\＆online via the Penji App（with Zoom）

Tutoring schedule \＆more info at
ess．unm．edu／services／tutoring／

CENTER FOR ACADEMIC PROGRAM SUPPORT caps.unm.edu

WRITING SCIENCE MATH LANGUAGES

Online Drop-in Support
Individual Appointments

Supplemental Instruction

Learning Strategies

Semester-Long Engagement Opportunities

Many are open to pre- and full majors and have no citizenship or GPA requirements.

For more information, or to apply, visit: https://ess.unm.edu/programs/current-students

TT ENGINEERING STUDENT SUCCESS CENTER

A tool for engineering your

success

This web APP allows you to keep up to date on all we have to offer．

Put your learning into your own hands．

success．unm．edu

Includes 1－click RSVP

N
ENGINEERING STUDENT
SUCCESS CENTER

Pre－Semester Prep Series
Physics 1，Chem 1，Trig／Pre－Calc through Calc 3
Semester Long Programs
Mentoring，Internships，Research
Presentation Prep Series
What is a Conference？
Designing Effective Presentations
Data Visualization
1st \＆2nd Year Student Events
Building Community－Weekly focused Study Groups
How to make the most of your learning
Twitch streaming event Study Skills
Manage Your Time Shadow Day CAD Basics
Coffee Hour with Faculty How to be more assertive UROC－Attendance Participation Spatial Visualization Series Recap of sessions 1－3 from the Fall semester Two－Axis Rotations and Inclined Planes \＆Curved Surfaces Reflection Symmetry \＆Write a Rule
Career and Professional Development Events an internship
So，What＇s Next？Start－Ups，Patents，and Publications STEM Mixer \＆Find Your Pack Interviewing Basics
Building Connections \＆Networking Resumes and Cover Letters and industry site visits

Contents

-Derivatives

- Optimization
- Inverse Function Theorem
- Integration
- Graphing

NHI

Derivatives

A measure of "slope" or the rate of change of a function

Power rule: $\frac{d}{d x} x^{n}=n x^{n-1}$
$\frac{d}{d x} 5 x^{20}$

罗

Product rule: $\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$\frac{d}{d x} e^{x} \sin (x)$

边

Quotient: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
$\frac{d}{d x} \frac{2 x}{\sin (x)}$

N'T

Chain: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$

$$
\frac{d}{d x} 5(x-3)^{2}
$$

紫

Chain: $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$
Which rule(s) do you need to solve these ?
Quotient: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
Product rule: $\frac{d}{d x}(f(x) g(x))=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
Power rule: $\frac{d}{d x} x^{n}=n x^{n-1}$

1. $\frac{d}{d x} \frac{3}{x^{3}}$ 2. $\frac{d}{d x} \frac{\sin (x) \cos (x)}{2 x}$
2. $\frac{d}{d x} 2 x \sin (x) \cos (x)$
3. $\frac{d}{d x}\left[\frac{1}{\sin (x)}+\frac{2}{\sin ^{2}(x)}\right]$
4. $\frac{d}{d x} \frac{3}{x^{3}} \quad$ 2. $\frac{d}{d x} \frac{\sin (x) \cos (x)}{2 x} \quad$ 3. $\frac{d}{d x} 2 x \sin (x) \cos (x) \quad$ 4. $\frac{d}{d x}\left[\frac{1}{\sin (x)}+\frac{2}{\sin ^{2}(x)}\right]$

罗

1. $\frac{d}{d x} e^{x}=$
2. $\frac{d}{d x} \sin (x)=$
3. $\frac{d}{d x} \cos (x)=$
4. $\frac{d}{d x} \ln (x)=$

边

Inverse Function Theorem

$\left(f^{-1}\right)^{\prime}(x)=\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{-1}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$

Need to find

- $f^{\prime}(x)$
$\circ f^{-1}(x)$

Inverse function theorem: $\left(f^{-1}\right)^{\prime}(x)=\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{-1}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
Find $\left(f^{-1}\right)^{\prime}(x)$
$f(x)=e^{x}$

Inverse function theorem: $\left(f^{-1}\right)^{\prime}(x)=\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{-1}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
Find $\left(f^{-1}\right)^{\prime}(x)$
$f(x)=2 x^{2}+4$

彩

Optimization

Is the problem asking you to take a derivative?
"Find the maximum"
"The largest possible..."

Optimization

Find two positive numbers whose sum is 50 and whose product is as large as possible.

Optimization

A car rental company charges its customers x dollars per day, where $60 \leq x \leq 150$. It has found that the number of cars rented per day can be modeled by the linear function $n(x)=750-5 x$. How much should the company charge each customer to maximize revenue?

N ${ }_{3}^{51}$

A car rental company charges its customers x dollars per day, where $60 \leq x \leq 150$. It has found that the number of cars rented per day can be modeled by the linear function $n(x)=750-5 x$. How much should the company charge each customer to maximize revenue?

Integrating with U substitution

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u, u=g(x), d u=g^{\prime}(x)
$$

Do you see the derivative of some part of the function also in the function?

U-sub: $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u, u=g(x), d u=g^{\prime}(x)$
$\int 2 x\left(x^{2}+4\right)^{3} d x$

N

U-sub: $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u, u=g(x), d u=g^{\prime}(x)$ $\int \sin (x) \cos ^{2}(x) d x$

觜

Integrating by parts

$$
\int u d v=u v-\int v d u
$$

(ultra-violet voodoo)

Two expressions multiplied together
(think of a product rule)

To choose u:
L - logarithmic function
I - inverse trig function
A - algebraic function
T-trig function
E - exponential function

Int by parts: $\int \boldsymbol{u} \boldsymbol{d} \boldsymbol{v}=\boldsymbol{u} \boldsymbol{v}-\int \boldsymbol{v} \boldsymbol{d} \boldsymbol{u}$
$\int x \sin (x) d x$

NHI

Int by parts: $\int \boldsymbol{u} \boldsymbol{d} \boldsymbol{v}=\boldsymbol{u} \boldsymbol{v}-\int \boldsymbol{v} \boldsymbol{d} \boldsymbol{u}$
$\int x^{2} e^{x} d x$

Improper Integrals

A definite integral that has one or both bounds at infinity or an integrand that approaches infinity at some point in the range of integration

觜

Improper integrals
$\int_{0}^{\infty} x^{2} d x$

NHI

Improper integrals
$\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

觜

Notes on Integrals

$\int_{-a}^{a}($ odd function $) d x=0$
$\int_{-a}^{a}\left(\right.$ even function) $d x=2 \int_{0}^{a}($ even function $) d x$

Look for areas of integration that make shapes! Solve by area!

Graphing with Derivatives

Slope:

$$
+
$$

$$
-\quad+
$$

Critical pts:
Max
Inflection pts: concave down
concave up

NH

a.

Is $f^{\prime}(x)$ a or $b ?$
b.

觜

$f(x)=$

边

Graph $f^{\prime}(x)$

$$
f^{\prime}(x)=
$$

Is $f(x) a, b$, or c ?
b.

c.

觜

Study Tips

What you can do before the semester

Mentality	Be proactive
Review	Review the self-evaluation
Explore	Explore online resources
Converse	Talk to your professor and TA
Locate	Find resources on campus, such as CTL and tutoring
Study	Form a study group, develop a study plan

Throughout the semester

GO TO CLASS

STAY ON TOP OF HOMEWORK

GO TO PROFESSOR AND TA OFFICE HOURS, CTL, CALC TABLE.

Start Your Semester Off Right Join us for a FREE

Pre-Semester Prep Workshop Series

ess.unm.edu

Don't forget to follow up on social media.
 NI

