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Typed Explanations 

1b.) Error fluctuates. Error decreases for increasing reaction rate (I may have the terminology 

wrong), a, then increases (See 1c. for additional information.) 

1c.) Based on the table provided by the MATLAB code, different rates may cause an over 

estimation or underestimation. In the table, one can see the percentages fluctuate. This implies 

that there is an ideal rate that will minimize error. Increasing the rate increases the amount of 

iterations required to attain the solution leading to amounting costs. However, if some if-

statement were implemented for tolerance, the iterative process may be cut short as the 

overarching guess of the reaction rate may reach a viable solution at less iterations. However, a 

high reaction rate may also overshoot significantly and induce extra iterations amounting to 

additional costs.  

The equation used in the generat_SPD_mat_and_rhs_vec.m is: 

A = -scal_fac*A + a*speye(n) Eq [1.1] 

This means that increasing the reaction rate (I may have the terminology wrong) or alpha, a, 

increases the second right hand term as a scaler on its diagonal elements alone, as the rest of the 

elements are zero. This then adds to the first term on the right-hand side to result in A. 

Obviously, higher values of a, increases A for its diagonal elements.  

2b.) By far the conjugate gradient is the most accurate of methods for inverses. This usually 

implies it is costly. Moreover, because there are more costly operations (matrix*vector for the 

conjugate gradient as compared to scaler*scaler for the Jacobi method). This is also supported by 

the elapsed times and norm error displayed in the output subsection in MATLAB Code. 

3a) Based on the following commands in Matlab: 

length(find(A(1,:) == 0)) 

length(find(A(2,:) == 0)) 

length(find(A(3,:) == 0)) 

length(find(A(4,:) == 0)) 

length(find(A(5,:) == 0)) 

length(find(A(6,:) == 0)) 

       length(find(A(end-1,:) == 0)) 

    length(find(A(end,:) == 0)) 

 

There is an average of n-3 zeros in a matrix. Where n represents the row or column dimension. 

Therefore, there are on average 3 non-zeros.  

 

3b.) See derivation on Written section. 

3c.) See Written section. 

3d.) Experimentally, on MATLAB (using the functions in question 1, hw5_q1), the relative norm 

error will plateau to a certain point not below 10^-2 for our special matrix A. This is past the 

2000 iteration mark. Therefore, it is more effective to use a direct method. In fact, the relative 



norm increases for increasing values of n and decrease correspondingly to the number of 

iterations. Especially for more complex matrices will there be a requirement of significantly 

more iterations. 

 

  



MATLAB Code 

INPUT/FUNCTIONS 

1.) 

function hw5_q1 

clc, clear, close all, format compact, format 

long 

Alphas = [0, 1.0, 10.0, 100.0, 1000.0]';  

n = 200; 

tot_it = 100; 

 

for k=1:length(Alphas) 

    %Generate Linear System 

    [A,b] =  

generate_SPD_mat_and_rhs_vec(n, 

Alphas(k)); 

     

    %Compute Solution 

    x_jacobi = my_jacobi(A, b, 

tot_it);%compute solution with your 

my_jacobi() function 

      

    %"True" Solution 

    x_t = (A\b); 

%compute norm of the error 

 err_jacobi(k) = (norm(x_t - 

x_jacobi)/norm(x_t)); 

end 

NormError = err_jacobi'; 

Rates = Alphas; 

T = table( Rates, NormError) 

summary(T) 

end 

 

function[A,b] =  

generate_SPD_mat_and_rhs_vec(n, a) 

%Input: 

%n: Positive Integer 

%a: Reaction term 

  

%Outputs: 

%A: nxn matrix 

%b: n vector 

  

h = 1/(n+1); 

x = (h:h:(1-h))'; 

  

my_two = -2*ones(n,1); 

my_ones = ones(n-1,1); 

scal_fac = (1/(h*h)); 

A = (diag(my_two) + diag(my_ones,1) + 

diag(my_ones,-1)); 

A = -scal_fac*A + a*speye(n); 

  

b = sin(2*pi*x); 

b(1) = b(1) - scal_fac; 

b(end) = b(end) - scal_fac; 

end 

 

function x = my_jacobi(A, b, tot_it) 

tic 

%Inputs: 

%A: Matrix 

%b: Vector 

%tot_it: Number of iterations 

%Output: 

%:x The solution after tot_it 

iterations/sweeps 

x(1:length(b)) = 0; %k=1 

 for k = 2:tot_it 

     for i = 1:length(b) 

           sum = 0; 

     for j = 1:length(b) 

         if j ~= i 

            sum  = sum + A(i,j)*x(j); 

         end 

     end 

     x(i) = -1/A(i,i)*(sum -b(i)); 

     end 

 end 

 toc 

end 

 



2.) 

 

function hw5_q2 

clc, clear, close all, format compact, format 

long 

tot_its = [5, 40, 80, 160, 320, 640, 1280]; 

num_experiments = length(tot_its); 

%Generate Linear System 

n = 200; 

a = 200; 

[A,b] =  

generate_SPD_mat_and_rhs_vec(n,a); 

err_jacobi = zeros(num_experiments,1); 

err_cg = zeros(num_experiments,1); 

exp_num = 1; 

for tot_it =tot_its 

    %Compute Solutions 

    %Jacobi 

    x_jacobi = my_jacobi(A,b,tot_it); 

    %CG 

    x_cg = my_cg(A,b, tot_it); 

    %"True" Solution 

    x_t = A\b; 

    %Errors 

    err_jacobi(exp_num) = norm(x_t - 

x_jacobi)/norm(x_t); 

    err_cg(exp_num) = norm(x_t - 

x_cg)/norm(x_t); 

    exp_num = exp_num + 1; 

end 

Num_Iterations = [5, 40, 80, 160, 320, 640, 

1280]'; 

Error_Jacobi  = err_jacobi; 

Error_CG = err_cg; 

T = table(Num_Iterations , Error_Jacobi, 

Error_CG) %Sorry, this is norm error? If 

%you want relative, just replace norm with 

%abs function 

summary(T) %I sent an email whether you 

%would like norm error or relative error, but 

%didn't get a response 

 

function x = my_cg(A, b, tot_it) 

format long, tic 

%Inputs: 

%A: Matrix 

%b: Vector 

%tot_it: number of iterations to take 

% 

%Output: 

%:x The solution after tot_it iterations 

x = (ones(1,length(b))*0)'; %Initial guess x0 

r = b - A*x; %r0 

s = r; %s0 

r1 = r; 

for k = 0:tot_it 

    a = r1'*r1/(s'*A*s); 

    x  = x + a*s; 

    r2 = r1 - a*A*s; 

    B2 = r2'*r2/(r1'*r1); 

    s = r2 + B2*s; 

    r1 = r2; 

end 

toc 

end 

 

function[A,b] =  

generate_SPD_mat_and_rhs_vec(n, a) 

%Input: 

%n: Positive Integer 

%a: Reaction term 

  

%Outputs: 

%A: nxn matrix 

%b: n vector 

  

h = 1/(n+1); 

x = (h:h:(1-h))'; 

  

my_two = -2*ones(n,1); 

my_ones = ones(n-1,1); 

scal_fac = (1/(h*h)); 

A = (diag(my_two) + diag(my_ones,1) + 

diag(my_ones,-1)); 

A = -scal_fac*A + a*speye(n); 

  

b = sin(2*pi*x); 

b(1) = b(1) - scal_fac; 

b(end) = b(end) - scal_fac; 

end 



 

function x = my_jacobi(A, b, tot_it) 

tic 

%Inputs: 

%A: Matrix 

%b: Vector 

%tot_it: Number of iterations 

%Output: 

%:x The solution after tot_it 

iterations/sweeps 

x(1:length(b)) = 0; %k=1 

 for k = 2:tot_it 

     for i = 1:length(b) 

           sum = 0; 

     for j = 1:length(b) 

         if j ~= i 

            sum  = sum + A(i,j)*x(j); 

         end 

     end 

     x(i) = -1/A(i,i)*(sum -b(i)); 

     end 

 end 

 toc 

 

OUTPUTS 

 

1.) 

Elapsed time is 0.014342 seconds. 

Elapsed time is 0.013413 seconds. 

Elapsed time is 0.013634 seconds. 

Elapsed time is 0.013310 seconds. 

Elapsed time is 0.013259 seconds. 

T = 

  5×2 table 

    Rates       NormError     

    _____    ________________ 

       0     13.0085440112614 

       1      12.954469339591 

      10     12.7560431102097 

     100     12.8360569351879 

    1000     13.2654073493241 

Variables: 

    Rates: 5×1 double 

        Values: 

            Min           0   

            Median       10   

            Max        1000   

    NormError: 5×1 double 

        Values: 

            Min       12.7560431102097 

            Median     12.954469339591 

            Max       13.2654073493241

 

 

2.) 

 

Elapsed time is 0.000568 seconds. 



Elapsed time is 0.002758 seconds. 

Elapsed time is 0.005348 seconds. 

Elapsed time is 0.002465 seconds. 

Elapsed time is 0.010628 seconds. 

Elapsed time is 0.002590 seconds. 

Elapsed time is 0.023502 seconds. 

Elapsed time is 0.004807 seconds. 

Elapsed time is 0.046391 seconds. 

Elapsed time is 0.010269 seconds. 

Elapsed time is 0.090625 seconds. 

Elapsed time is 0.018298 seconds. 

Elapsed time is 0.179794 seconds. 

Elapsed time is 0.033207 seconds. 

T = 

  7×3 table 

    Num_Iterations      Error_Jacobi            Error_CG       

    ______________    ________________    ____________________ 

            5          13.875901986608       0.728539659116126 

           40         13.3319573730442      0.0760287930897383 

           80         13.0196123193756     0.00515771794926383 

          160         12.6386866643278    9.73457141507309e-16 

          320         12.2573885589879    9.73457141507309e-16 

          640         12.0203404154858    9.73457141507309e-16 

         1280         11.9654766717383    9.73457141507309e-16 

Variables: 

    Num_Iterations: 7×1 double 

        Values: 

            Min                5       

            Median           160       

            Max             1280       

    Error_Jacobi: 7×1 double 

        Values: 

            Min       11.9654766717383 

            Median    12.6386866643278 

            Max        13.875901986608 

    Error_CG: 7×1 double 

        Values: 

            Min       9.73457141507309e-16 

            Median    9.73457141507309e-16 

            Max          0.728539659116126 

>> 

 


