## HOMEWORK FIVE MATH-375

Michael Tanguay, Mathew Gervasi

## Typed Explanations

1b.) Error fluctuates. Error decreases for increasing reaction rate (I may have the terminology wrong), a, then increases (See 1c. for additional information.)

1c.) Based on the table provided by the MATLAB code, different rates may cause an over estimation or underestimation. In the table, one can see the percentages fluctuate. This implies that there is an ideal rate that will minimize error. Increasing the rate increases the amount of iterations required to attain the solution leading to amounting costs. However, if some ifstatement were implemented for tolerance, the iterative process may be cut short as the overarching guess of the reaction rate may reach a viable solution at less iterations. However, a high reaction rate may also overshoot significantly and induce extra iterations amounting to additional costs.

The equation used in the generat_SPD_mat_and_rhs_vec.m is:
A = -scal_fac*A + a*speye(n)

This means that increasing the reaction rate (I may have the terminology wrong) or alpha, a, increases the second right hand term as a scaler on its diagonal elements alone, as the rest of the elements are zero. This then adds to the first term on the right-hand side to result in A. Obviously, higher values of a, increases A for its diagonal elements.

2b.) By far the conjugate gradient is the most accurate of methods for inverses. This usually implies it is costly. Moreover, because there are more costly operations (matrix*vector for the conjugate gradient as compared to scaler*scaler for the Jacobi method). This is also supported by the elapsed times and norm error displayed in the output subsection in MATLAB Code.

3a) Based on the following commands in Matlab:

$$
\begin{aligned}
& \text { length(find }(\mathrm{A}(1,:)==0)) \\
& \text { length(find }(\mathrm{A}(2,:)==0)) \\
& \text { length(find }(\mathrm{A}(3,:)==0)) \\
& \text { length(find }(\mathrm{A}(4,:)==0)) \\
& \text { length(find }(\mathrm{A}(5,:)==0)) \\
& \text { length(find }(\mathrm{A}(6,:)==0)) \\
& \text { length(find(A(end-1,:) }=0)) \\
& \text { length(find(A(end,:) }=0))
\end{aligned}
$$

There is an average of $\mathrm{n}-3$ zeros in a matrix. Where n represents the row or column dimension. Therefore, there are on average 3 non-zeros.

3b.) See derivation on Written section.
3c.) See Written section.
3d.) Experimentally, on MATLAB (using the functions in question 1, hw5_q1), the relative norm error will plateau to a certain point not below $10^{\wedge}-2$ for our special matrix A. This is past the 2000 iteration mark. Therefore, it is more effective to use a direct method. In fact, the relative
norm increases for increasing values of $n$ and decrease correspondingly to the number of iterations. Especially for more complex matrices will there be a requirement of significantly more iterations.

## INPUT/FUNCTIONS

## 1.)

function hw5_q1
clc, clear, close all, format compact, format long
Alphas $=[0,1.0,10.0,100.0,1000.0]^{\prime} ;$
$\mathrm{n}=200$;
tot_it = 100;
for $\mathrm{k}=1$ :length(Alphas)
\%Generate Linear System
[A,b] =
generate_SPD_mat_and_rhs_vec(n, Alphas(k));
\%Compute Solution
x_jacobi = my_jacobi(A, b,
tot_it);\%compute solution with your
my_jacobi() function

> \%"True" Solution
> x_t = (Alb);
\%compute norm of the error
err_jacobi(k) $=\left(\right.$ norm $\left(x \_t-\right.$
x_jacobi)/norm(x_t));
end
NormError = err_jacobi';
Rates = Alphas;
T = table( Rates, NormError)
summary(T)
end
function[A,b] =
generate_SPD_mat_and_rhs_vec(n, a)
\%Input:
\%n: Positive Integer
\%a: Reaction term
\%Outputs:
\%A: nxn matrix
\%b: n vector

$$
\mathrm{h}=1 /(\mathrm{n}+1) ;
$$

x = (h:h:(1-h))';
my_two $=-2 *$ ones( $\mathrm{n}, 1$ );
my_ones $=$ ones( $\mathrm{n}-1,1$ );
scal_fac = (1/(h*h));
A $=($ diag $($ my_two $)+$ diag $($ my_ones, 1$)+$ diag(my_ones,-1));
A = -scal_fac*A + a*speye(n);
$\mathrm{b}=\sin \left(2^{*} \mathrm{pi}^{*} \mathrm{x}\right) ;$
$b(1)=b(1)-$ scal_fac;
$b($ end $)=b($ end $)-$ scal_fac;
end
function $x=m y \_j a c o b i(A, b$, tot_it $)$
tic
\%Inputs:
\%A: Matrix
\%b: Vector
\%tot_it: Number of iterations
\%Output:
\%:x The solution after tot_it
iterations/sweeps
$x(1:$ length $(b))=0 ; \% \mathrm{k}=1$
for $k=2:$ tot_it
for $\mathrm{i}=1$ :length(b)
sum $=0$;
for $\mathrm{j}=1$ :length $(\mathrm{b})$
if $\mathrm{j} \sim=\mathrm{i}$
sum $=\operatorname{sum}+A(i, j) * x(j) ;$
end
end
$x(i)=-1 / A(i, i) *($ sum $-b(i))$;
end
end
toc
end

## 2.)

function hw5_q2
clc, clear, close all, format compact, format
long
tot_its $=[5,40,80,160,320,640,1280]$;
num_experiments = length(tot_its);
\%Generate Linear System
$\mathrm{n}=200$;
$\mathrm{a}=200$;
[A,b] =
generate_SPD_mat_and_rhs_vec(n,a);
err_jacobi = zeros(num_experiments,1);
err_cg = zeros(num_experiments,1);
exp_num $=1$;
for tot_it =tot_its
\%Compute Solutions
\%Jacobi
x_jacobi = my_jacobi(A,b,tot_it);
\%CG
$\mathrm{x} \_$cg $=$my_cg(A,b, tot_it);
\%"True" Solution
$\mathrm{x} \_\mathrm{t}=\mathrm{Alb}$;
\%Errors
err_jacobi(exp_num) $=$ norm $\left(x \_t-\right.$
x_jacobi)/norm(x_t);
err_cg(exp_num) $=$ norm $\left(x \_t-\right.$
x_cg)/norm(x_t);
exp_num $=$ exp_num +1 ;
end
Num_Iterations $=[5,40,80,160,320,640$, 1280]';
Error_Jacobi = err_jacobi;
Error_CG = err_cg;
T = table(Num_Iterations , Error_Jacobi, Error_CG) \%Sorry, this is norm error? If \%you want relative, just replace norm with \%abs function
summary(T) \%I sent an email whether you
\%would like norm error or relative error, but \%didn't get a response
function $x=m y \_c g(A, b$, tot_it)
format long, tic
\%Inputs:
\%A: Matrix
\%b: Vector
\%tot_it: number of iterations to take \%
\%Output:
$\%: x$ The solution after tot_it iterations
$\mathrm{x}=(\text { ones }(1, \text { length(b) }) * 0)^{\prime} ; \%$ Initial guess x 0
$\mathrm{r}=\mathrm{b}-\mathrm{A} * \mathrm{x} ; \% \mathrm{r} 0$
$\mathrm{s}=\mathrm{r} ; \% \mathrm{~s} 0$
r1 = r;
for $\mathrm{k}=0$ :tot_it
$\mathrm{a}=\mathrm{r} 1{ }^{\prime} * \mathrm{r} 1 /\left(\mathrm{s}^{\prime} * \mathrm{~A} * \mathrm{~s}\right)$;
$\mathrm{x}=\mathrm{x}+\mathrm{a}$ s;
$\mathrm{r} 2=\mathrm{r} 1-\mathrm{a}^{*} \mathrm{~A}$ *s;
$\mathrm{B} 2=\mathrm{r} 2{ }^{\prime} * \mathrm{r} 2 /\left(\mathrm{r} 1^{\prime} * \mathrm{r} 1\right)$;
$\mathrm{s}=\mathrm{r} 2+\mathrm{B} 2 * \mathrm{~s}$;
$\mathrm{r} 1=\mathrm{r} 2$;
end
toc
end
function[A,b] =
generate_SPD_mat_and_rhs_vec(n, a)
\%Input:
\%n: Positive Integer
\%a: Reaction term
\%Outputs:
\%A: nxn matrix
$\%$ : n vector
$\mathrm{h}=1 /(\mathrm{n}+1)$;
$\mathrm{x}=(\mathrm{h}: \mathrm{h}:(1-\mathrm{h}))^{\prime} ;$
my_two $=-2 *$ ones $(\mathrm{n}, 1)$;
my_ones $=$ ones $(\mathrm{n}-1,1)$;
scal_fac = (1/(h*h));
A $=\left(\right.$ diag $\left(m y \_t w o\right)+\operatorname{diag}\left(m y \_o n e s, 1\right)+$
diag(my_ones,-1));
A = -scal_fac*A $+a^{*}$ speye $(n)$;
$\mathrm{b}=\sin \left(2^{*} \mathrm{pi}^{*} \mathrm{x}\right)$;
$b(1)=b(1)-$ scal_fac;
$b($ end $)=b($ end $)-$ scal_fac;
end
function $\mathrm{x}=\mathrm{my}$ _jacobi( $\mathrm{A}, \mathrm{b}$, tot_it $)$ tic
\%Inputs:
\%A: Matrix
\%b: Vector
\%tot_it: Number of iterations
\%Output:
\%:x The solution after tot_it
iterations/sweeps
$\mathrm{x}(1:$ length $(\mathrm{b}))=0 ; \% \mathrm{k}=1$

## OUTPUTS

## 1.)

Elapsed time is 0.014342 seconds. Elapsed time is 0.013413 seconds. Elapsed time is 0.013634 seconds. Elapsed time is 0.013310 seconds. Elapsed time is 0.013259 seconds.
$\mathrm{T}=$
$5 \times 2$ table

Rates NormError

| 0 | 13.0085440112614 |
| :---: | :---: |
| 1 | 12.954469339591 |
| 10 | 12.7560431102097 |
| 100 | 12.8360569351879 |
| 1000 | 13.2654073493241 |

Variables:
Rates: $5 \times 1$ double
Values:
Min 0
Median 10
Max 1000
NormError: $5 \times 1$ double
Values:
Min 12.7560431102097
Median 12.954469339591
Max 13.2654073493241

## 2.)

Elapsed time is 0.000568 seconds.

```
for k = 2:tot_it
    for i = 1:length(b)
            sum = 0;
        for j= 1:length(b)
            if j ~= i
                sum = sum + A(i,j)*x(j);
            end
        end
        x(i)=-1/A(i,i)*(sum -b(i));
        end
end
toc
```

Elapsed time is 0.002758 seconds. Elapsed time is 0.005348 seconds. Elapsed time is 0.002465 seconds. Elapsed time is 0.010628 seconds. Elapsed time is 0.002590 seconds. Elapsed time is 0.023502 seconds. Elapsed time is 0.004807 seconds. Elapsed time is 0.046391 seconds. Elapsed time is 0.010269 seconds. Elapsed time is 0.090625 seconds. Elapsed time is 0.018298 seconds.
Elapsed time is 0.179794 seconds.
Elapsed time is 0.033207 seconds.
$\mathrm{T}=$
$7 \times 3$ table
Num_Iterations Error_Jacobi Error_CG

| 5 | 13.875901986608 | 0.728539659116126 |
| :---: | :---: | :---: |
| 40 | 13.3319573730442 | 0.0760287930897383 |
| 80 | 13.0196123193756 | 0.00515771794926383 |
| 160 | 12.6386866643278 | $9.73457141507309 \mathrm{e}-16$ |
| 320 | 12.2573885589879 | $9.73457141507309 \mathrm{e}-16$ |
| 640 | 12.0203404154858 | $9.73457141507309 \mathrm{e}-16$ |
| 1280 | 11.9654766717383 | $9.73457141507309 \mathrm{e}-16$ |

Variables:
Num_Iterations: $7 \times 1$ double
Values:
Min 5
Median 160
Max 1280
Error_Jacobi: $7 \times 1$ double
Values:
Min 11.9654766717383
Median 12.6386866643278
Max 13.875901986608
Error_CG: $7 \times 1$ double
Values:
Min $\quad 9.73457141507309 \mathrm{e}-16$
Median $9.73457141507309 \mathrm{e}-16$
Max 0.728539659116126

