

Michael Tanguay, Mathew Gervasi

HOMEWORK FIVE
MATH-375

Typed Explanations

1b.) Error fluctuates. Error decreases for increasing reaction rate (I may have the terminology

wrong), a, then increases (See 1c. for additional information.)

1c.) Based on the table provided by the MATLAB code, different rates may cause an over

estimation or underestimation. In the table, one can see the percentages fluctuate. This implies

that there is an ideal rate that will minimize error. Increasing the rate increases the amount of

iterations required to attain the solution leading to amounting costs. However, if some if-

statement were implemented for tolerance, the iterative process may be cut short as the

overarching guess of the reaction rate may reach a viable solution at less iterations. However, a

high reaction rate may also overshoot significantly and induce extra iterations amounting to

additional costs.

The equation used in the generat_SPD_mat_and_rhs_vec.m is:

A = -scal_fac*A + a*speye(n) Eq [1.1]

This means that increasing the reaction rate (I may have the terminology wrong) or alpha, a,

increases the second right hand term as a scaler on its diagonal elements alone, as the rest of the

elements are zero. This then adds to the first term on the right-hand side to result in A.

Obviously, higher values of a, increases A for its diagonal elements.

2b.) By far the conjugate gradient is the most accurate of methods for inverses. This usually

implies it is costly. Moreover, because there are more costly operations (matrix*vector for the

conjugate gradient as compared to scaler*scaler for the Jacobi method). This is also supported by

the elapsed times and norm error displayed in the output subsection in MATLAB Code.

3a) Based on the following commands in Matlab:

length(find(A(1,:) == 0))

length(find(A(2,:) == 0))

length(find(A(3,:) == 0))

length(find(A(4,:) == 0))

length(find(A(5,:) == 0))

length(find(A(6,:) == 0))

 length(find(A(end-1,:) == 0))

 length(find(A(end,:) == 0))

There is an average of n-3 zeros in a matrix. Where n represents the row or column dimension.

Therefore, there are on average 3 non-zeros.

3b.) See derivation on Written section.

3c.) See Written section.

3d.) Experimentally, on MATLAB (using the functions in question 1, hw5_q1), the relative norm

error will plateau to a certain point not below 10^-2 for our special matrix A. This is past the

2000 iteration mark. Therefore, it is more effective to use a direct method. In fact, the relative

norm increases for increasing values of n and decrease correspondingly to the number of

iterations. Especially for more complex matrices will there be a requirement of significantly

more iterations.

MATLAB Code

INPUT/FUNCTIONS

1.)

function hw5_q1

clc, clear, close all, format compact, format

long

Alphas = [0, 1.0, 10.0, 100.0, 1000.0]';

n = 200;

tot_it = 100;

for k=1:length(Alphas)

 %Generate Linear System

 [A,b] =

generate_SPD_mat_and_rhs_vec(n,

Alphas(k));

 %Compute Solution

 x_jacobi = my_jacobi(A, b,

tot_it);%compute solution with your

my_jacobi() function

 %"True" Solution

 x_t = (A\b);

%compute norm of the error

 err_jacobi(k) = (norm(x_t -

x_jacobi)/norm(x_t));

end

NormError = err_jacobi';

Rates = Alphas;

T = table(Rates, NormError)

summary(T)

end

function[A,b] =

generate_SPD_mat_and_rhs_vec(n, a)

%Input:

%n: Positive Integer

%a: Reaction term

%Outputs:

%A: nxn matrix

%b: n vector

h = 1/(n+1);

x = (h:h:(1-h))';

my_two = -2*ones(n,1);

my_ones = ones(n-1,1);

scal_fac = (1/(h*h));

A = (diag(my_two) + diag(my_ones,1) +

diag(my_ones,-1));

A = -scal_fac*A + a*speye(n);

b = sin(2*pi*x);

b(1) = b(1) - scal_fac;

b(end) = b(end) - scal_fac;

end

function x = my_jacobi(A, b, tot_it)

tic

%Inputs:

%A: Matrix

%b: Vector

%tot_it: Number of iterations

%Output:

%:x The solution after tot_it

iterations/sweeps

x(1:length(b)) = 0; %k=1

 for k = 2:tot_it

 for i = 1:length(b)

 sum = 0;

 for j = 1:length(b)

 if j ~= i

 sum = sum + A(i,j)*x(j);

 end

 end

 x(i) = -1/A(i,i)*(sum -b(i));

 end

 end

 toc

end

2.)

function hw5_q2

clc, clear, close all, format compact, format

long

tot_its = [5, 40, 80, 160, 320, 640, 1280];

num_experiments = length(tot_its);

%Generate Linear System

n = 200;

a = 200;

[A,b] =

generate_SPD_mat_and_rhs_vec(n,a);

err_jacobi = zeros(num_experiments,1);

err_cg = zeros(num_experiments,1);

exp_num = 1;

for tot_it =tot_its

 %Compute Solutions

 %Jacobi

 x_jacobi = my_jacobi(A,b,tot_it);

 %CG

 x_cg = my_cg(A,b, tot_it);

 %"True" Solution

 x_t = A\b;

 %Errors

 err_jacobi(exp_num) = norm(x_t -

x_jacobi)/norm(x_t);

 err_cg(exp_num) = norm(x_t -

x_cg)/norm(x_t);

 exp_num = exp_num + 1;

end

Num_Iterations = [5, 40, 80, 160, 320, 640,

1280]';

Error_Jacobi = err_jacobi;

Error_CG = err_cg;

T = table(Num_Iterations , Error_Jacobi,

Error_CG) %Sorry, this is norm error? If

%you want relative, just replace norm with

%abs function

summary(T) %I sent an email whether you

%would like norm error or relative error, but

%didn't get a response

function x = my_cg(A, b, tot_it)

format long, tic

%Inputs:

%A: Matrix

%b: Vector

%tot_it: number of iterations to take

%

%Output:

%:x The solution after tot_it iterations

x = (ones(1,length(b))*0)'; %Initial guess x0

r = b - A*x; %r0

s = r; %s0

r1 = r;

for k = 0:tot_it

 a = r1'*r1/(s'*A*s);

 x = x + a*s;

 r2 = r1 - a*A*s;

 B2 = r2'*r2/(r1'*r1);

 s = r2 + B2*s;

 r1 = r2;

end

toc

end

function[A,b] =

generate_SPD_mat_and_rhs_vec(n, a)

%Input:

%n: Positive Integer

%a: Reaction term

%Outputs:

%A: nxn matrix

%b: n vector

h = 1/(n+1);

x = (h:h:(1-h))';

my_two = -2*ones(n,1);

my_ones = ones(n-1,1);

scal_fac = (1/(h*h));

A = (diag(my_two) + diag(my_ones,1) +

diag(my_ones,-1));

A = -scal_fac*A + a*speye(n);

b = sin(2*pi*x);

b(1) = b(1) - scal_fac;

b(end) = b(end) - scal_fac;

end

function x = my_jacobi(A, b, tot_it)

tic

%Inputs:

%A: Matrix

%b: Vector

%tot_it: Number of iterations

%Output:

%:x The solution after tot_it

iterations/sweeps

x(1:length(b)) = 0; %k=1

 for k = 2:tot_it

 for i = 1:length(b)

 sum = 0;

 for j = 1:length(b)

 if j ~= i

 sum = sum + A(i,j)*x(j);

 end

 end

 x(i) = -1/A(i,i)*(sum -b(i));

 end

 end

 toc

OUTPUTS

1.)

Elapsed time is 0.014342 seconds.

Elapsed time is 0.013413 seconds.

Elapsed time is 0.013634 seconds.

Elapsed time is 0.013310 seconds.

Elapsed time is 0.013259 seconds.

T =

 5×2 table

 Rates NormError

 _____ ________________

 0 13.0085440112614

 1 12.954469339591

 10 12.7560431102097

 100 12.8360569351879

 1000 13.2654073493241

Variables:

 Rates: 5×1 double

 Values:

 Min 0

 Median 10

 Max 1000

 NormError: 5×1 double

 Values:

 Min 12.7560431102097

 Median 12.954469339591

 Max 13.2654073493241

2.)

Elapsed time is 0.000568 seconds.

Elapsed time is 0.002758 seconds.

Elapsed time is 0.005348 seconds.

Elapsed time is 0.002465 seconds.

Elapsed time is 0.010628 seconds.

Elapsed time is 0.002590 seconds.

Elapsed time is 0.023502 seconds.

Elapsed time is 0.004807 seconds.

Elapsed time is 0.046391 seconds.

Elapsed time is 0.010269 seconds.

Elapsed time is 0.090625 seconds.

Elapsed time is 0.018298 seconds.

Elapsed time is 0.179794 seconds.

Elapsed time is 0.033207 seconds.

T =

 7×3 table

 Num_Iterations Error_Jacobi Error_CG

 ______________ ________________ ____________________

 5 13.875901986608 0.728539659116126

 40 13.3319573730442 0.0760287930897383

 80 13.0196123193756 0.00515771794926383

 160 12.6386866643278 9.73457141507309e-16

 320 12.2573885589879 9.73457141507309e-16

 640 12.0203404154858 9.73457141507309e-16

 1280 11.9654766717383 9.73457141507309e-16

Variables:

 Num_Iterations: 7×1 double

 Values:

 Min 5

 Median 160

 Max 1280

 Error_Jacobi: 7×1 double

 Values:

 Min 11.9654766717383

 Median 12.6386866643278

 Max 13.875901986608

 Error_CG: 7×1 double

 Values:

 Min 9.73457141507309e-16

 Median 9.73457141507309e-16

 Max 0.728539659116126

>>

